

Linear diffusion equations with singular absorption potentials and/or unbounded convective flows. Weights as boundary conditions: beyond Hardy-type inequalities

> David Gómez-Castro I. de Matemática Interdisciplinar, U. Complutense de Madrid

> > April 25, 2017

Collaborators

Jesús Ildefonso Díaz (Full Professor at UCM¹, Real Academia de Ciencias)

Jean Michel Rakotoson (Full Professor at U. Poitiers)

Roger Temam (Full Professor at Indiana University², French Academy of Sciences)

¹Director of the Instituto de Matemática Interdisciplinar

²Director of the Institute for Scientific Computing and Applied Mathematics

Introduction

The aim of this conference is to study

$$-\Delta u + \vec{b} \cdot \nabla u + Vu = f$$

in the setting

$$V \in L^1_{loc}(\Omega), \qquad \vec{b} \in L^N(\Omega)^N, \qquad f\delta \in L^1(\Omega)$$

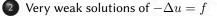
where

 $\delta(x) = d(x, \partial \Omega).$

The results of this talk correspond to

J. I. Díaz, D. Gómez-Castro, J. M. Rakotoson, and R. Temam. "Linear diffusion with singular absorption potential and/or unbounded convective flow: the weighted space approach". 2017

1 Motivations & Applications



3 Very weak solutions of $-\Delta u + Vu = f, V \ge 0$

4 Very weak solutions $-\Delta u + \vec{b} \cdot \nabla u + Vu = f$

1 Motivations & Applications

Very weak solutions of $-\Delta u + Vu = f, V \ge 0$

Very weak solutions $-\Delta u + \vec{b} \cdot \nabla u + Vu = f$

Motivations & Applications

- Linearization of nonlinear problem
- Shape differentiation
- Schrödinger equation
- Navier-Stokes equations

Motivations & Applications

- Linearization of nonlinear problem
- Shape differentiation
- Schrödinger equation
- Navier-Stokes equations

Linearization of singular and/or degenerate nonlinear equations

Consider

$$-\Delta \varphi(w) + \operatorname{div}\left(\vec{\phi}(w)\right) + g(w) = f(x)$$
 in Ω

Context: stability of the associated parabolic or hyperbolic equations. $\varphi \nearrow$. Take $\theta := \varphi(w)$ we get $(\vec{\psi} = \vec{\phi} \circ \varphi^{-1}, h = g \circ \varphi^{-1})$:

$$-\Delta \theta + \operatorname{div} \left(\vec{\psi}(\theta) \right) + h(\theta) = f(x) \quad \text{in } \Omega,$$

Take $\theta_{\infty}(x)$ a solution of (2), s.t. $\theta = 0$ on $\partial\Omega$. Then the "formal linearization" around the solution $\theta_{\infty}(x)$:

$$\vec{b}(x) := \vec{\psi}(\theta_{\infty}(x))$$
 $V(x) = h'(\theta_{\infty}(x)).$

 $\vec{\psi'}(r)$ and h'(r) present a singularity at $r=0~({\rm see^3})$

³J. Hernández, F. J. Mancebo, and J. M. Vega. "On the linearization of some singular, nonlinear elliptic problems and applications". In: *Annales de l'IHP Analyse non linéaire*. Vol. 19. 6. 2002, pp. 777–813.

David Gómez-Castro (UCM) (2)

Motivations & Applications

- Linearization of nonlinear problem
- Shape differentiation
- Schrödinger equation
- Navier-Stokes equations

Application to shape differentiation

For $\Omega \subset \mathbb{R}^n$ smooth let us take $u(\Omega)$ the solution of the problem

$$\begin{cases} -\Delta u_{\Omega} + \beta(u_{\Omega}) = f, & \Omega\\ u_{\Omega} = 0, & \partial \Omega \end{cases}$$

Take Ω_0 fixed and consider

$$\begin{array}{rcl} \{ \text{deformation maps of } \Omega_0 \} & \to & L^2(\mathbb{R}^n) \\ & \Phi & \mapsto & u_{\Phi(\Omega_0)} \end{array}$$

Roughly speaking, $\Omega = \Phi(\Omega_0)$.

Application to shape differentiation. Our motivation.

Theorem (Díaz & G-C^{*a*})

^aJ. I. Díaz and D. Gómez-Castro. "An Application of Shape Differentiation to the Effectiveness of a Steady State Reaction-Diffusion Problem Arising in Chemical Engineering". In: *Electronic Journal of Differential Equations* 22 (2015), pp. 31–45.

Let Ω_0 smooth, $\beta \in W^{2,\infty}(\mathbb{R})$ then the map

$$F: W^{1,\infty}(\mathbb{R}^n, \mathbb{R}^n) \to H^1_0(\Omega)$$
$$\theta \mapsto u_{(I+\theta)(\Omega_0)} \circ (I+\theta)$$

is differentiable at $\theta = 0$. The directional derivative $u'(\theta)$ is the solution of the problem

$$\begin{cases} -\Delta u' + \beta'(u_0)u' = 0, & \Omega_0 \\ u' + \theta \cdot \nabla u_0 = 0, & \partial \Omega_0 \end{cases}$$
(3)

where $u_0 = u_{\Omega_0} \in H^1_0(\Omega)$

Application to shape differentiation: the non smooth case

Let following reaction term is very frequent in chemical catalysis ⁴

 $g(s) = |s|^{q-1}s, \ 0 < q < 1,$ Define $\beta(s) = g(1) - g(1-s)$ (4)

Then the solution u may develop a flat zone $N = \{u = 1\}$ ("dead core")⁵

A first estimate:

Remark

$$V(x) = \beta'(u_0(x))) \sim d(x, N)^{-2} \text{ for } x \in \Omega \setminus N.$$
(5)

⁴The solution is w = 1, $\partial\Omega$ in Chemistry and $N = \{w = 0\}$. u = 0 on $\partial\Omega$ due to a change of variable.

⁵J. I. Díaz. Nonlinear Partial Differential Equations and Free Boundaries. London: Pitman, 1985.

David Gómez-Castro (UCM)

Motivations & Applications

- Linearization of nonlinear problem
- Shape differentiation

• Schrödinger equation

• Navier-Stokes equations

The importance in the Schrödinger equation

If we consider the Schrödinger equation

$$i\hbar\frac{\partial\Psi}{\partial t}=-\Delta\Psi+V\Psi$$

the separation $\Psi = u(x)T(t)$ yields

 $-\Delta u + Vu = Eu$

Remark

Frequently in Physics the authors take

 $V(x) = d(x, \partial \Omega)^{-\alpha}.$

Motivations & Applications

- Linearization of nonlinear problem
- Shape differentiation
- Schrödinger equation
- Navier-Stokes equations

The vorticity equation in fluid mechanics.

The stationary Navier-Stokes in 2D:

$$-\Delta \vec{b} + (\vec{b} \cdot \nabla)\vec{b} + \nabla p = \vec{F}$$

We get our problem taking the curl of the equation and setting

$$f = \vec{F} \cdot \vec{k}, \qquad u = \operatorname{curl} \vec{b} \cdot \vec{k},$$

where \vec{k} is the last element of the canonical basis in \mathbb{R}^3 . Nevertheless, as far as we know no satisfactory theory is available in the literature under the general condition that $\vec{F} \cdot \vec{k} \in L^1(\Omega; \delta)$.

Motivations & Applications

2 Very weak solutions of $-\Delta u = f$

Very weak solutions of $-\Delta u + Vu = f, V \ge 0$

Very weak solutions $-\Delta u + \vec{b} \cdot \nabla u + Vu = f$

- 2 Very weak solutions of $-\Delta u = f$
 - Uniqueness result
 - Continuous dependence
 - Existence result
 - Uniqueness result. Comparison principle
 - Kato's inequality for $u \in L^1_{loc}(\Omega)$
 - Uniqueness via Kato's inequality for $u \in W_0^{1,1}$
 - Weights as boundary conditions. Beyond Hardy's inequality

Very weak solutions of $-\Delta u = f$

Let Ω be smooth and bounded. We consider the problem

$$\begin{cases} -\Delta u = f & \Omega, \\ u = u_0 & \partial \Omega. \end{cases}$$

In this setting we have classically:

- classical solution. $u \in C^2(\Omega) \cap C(\overline{\Omega})$
- **Weak solution.** Take a classical solution. Multiply the equation by $\varphi \in C_2(\overline{\Omega}), \varphi = 0$ in $\partial\Omega$, integrate by parts:

$$\int_{\Omega} (-\Delta u)\varphi = \int_{\Omega} f\varphi$$
$$-\int_{\Omega} \operatorname{div}(\varphi \nabla u) + \int_{\Omega} \nabla u \cdot \nabla \varphi = \int_{\Omega} f\varphi$$
$$-\int_{\partial \Omega} (\varphi \nabla u) \cdot n + \int_{\Omega} \nabla u \cdot \nabla \varphi = \int_{\Omega} f\varphi$$
$$\int_{\Omega} \nabla u \cdot \nabla \varphi = \int_{\Omega} f\varphi.$$
(6)

Very weak solutions of $-\Delta u = f$

• very weak solution.⁶: Integrating by part again we have

$$-\int_{\Omega} u\Delta\varphi = \int_{\Omega} f\varphi - \int_{\partial\Omega} u_0 \frac{\partial\varphi}{\partial n}$$
(7)

For $f\in L^1(\Omega,\delta), u_0\in L^1(\partial\Omega)$ we define

$$\mathbf{v.w.s.} \equiv \begin{cases} (7) \quad \forall \varphi \in W^{2,\infty}(\Omega) \cap W_0^{1,\infty}(\Omega) \\ u \in L^1(\Omega) \end{cases}$$

⁶H. Brézis. Une équation non linéaire avec conditions aux limites dans L^1 . 1971.

David Gómez-Castro (UCM)

COMPLUTENSE MADRID

Outline

Very weak solutions of $-\Delta u=f$

- Uniqueness result
- Continuous dependence
- Existence result
- Uniqueness result. Comparison principle
- Kato's inequality for $u \in L^1_{loc}(\Omega)$
- ullet Uniqueness via Kato's inequality for $u\in W^{1,1}_0$
- Weights as boundary conditions. Beyond Hardy's inequality

Uniqueness result

The difference of two solutions $u = u_1 - u_2$ satisfies

$$-\int_{\Omega} u\Delta\varphi = 0, \forall \varphi \in W^{2,\infty}(\Omega) \cap W^{1,\infty}_0(\Omega).$$

Therefore u = 0.

COMPLUTENSE MADRID

Outline

Very weak solutions of $-\Delta u = f$

Uniqueness result

Continuous dependence

- Existence result
- Uniqueness result. Comparison principle
- Kato's inequality for $u \in L^1_{loc}(\Omega)$
- Uniqueness via Kato's inequality for $u \in W^{1,1}_0$
- Weights as boundary conditions. Beyond Hardy's inequality

Continuous dependence in the smooth case

Let u the unique weak solution when f, u_0 are smooth. Then

 $||u||_{L^{1}(\Omega)} \leq C(||f\delta||_{L^{1}(\Omega)} + ||u_{0}||_{L^{1}(\partial\Omega)})$

Proof.

The idea of the proof is simple. For γ a nondecreasing function $\gamma(0)=0,$ let $\gamma=\partial k, k(0)=0, \kappa\geq 0.$ Let $\varphi\geq 0.$ By considering a intelligent test function $\varphi\gamma(u)$ we obtain

$$\nabla u \cdot \nabla(\varphi \gamma(u)) = \nabla k(u) \cdot \nabla \varphi + \varphi \gamma'(u) |\nabla u|^2 \le \nabla k(u) \cdot \nabla \varphi.$$

Hence

$$\int_{\Omega} \nabla k(u) \nabla \varphi \leq \int_{\Omega} f \varphi \gamma(u)$$

Let $\varphi > 0$ be given by

$$-\Delta \varphi = 1, \Omega \quad \varphi = 0 \partial \Omega.$$

Then

$$\begin{split} \int_{\partial\Omega} k(u_0) \frac{\partial \varphi}{\partial n} + \int_{\Omega} k(u) \underbrace{(-\Delta \varphi)}_{=1} &\leq \int_{\Omega} f \delta \underbrace{\xi^{-1}}_{\in L^{\infty}} \varphi(u) \\ &\int_{\Omega} k(u) \leq \|\varphi\|_{W^{1,\infty}} \left(\int_{\partial\Omega} k(u_0) + \int_{\Omega} \delta |f| |\gamma(u)| \right) \end{split}$$

As $\gamma \to \text{sign}$ we have $k \to |\cdot|$.

COMPLUTENSE Madrid

Outline

Very weak solutions of $-\Delta u = f$

- Uniqueness result
- Continuous dependence
- Existence result
- Uniqueness result. Comparison principle
- Kato's inequality for $u \in L^1_{loc}(\Omega)$
- ullet Uniqueness via Kato's inequality for $u\in W^{1,1}_0$
- Weights as boundary conditions. Beyond Hardy's inequality

COMPLUTENSE MADRID

Existence I

Theorem

Let $f\delta \in L^1(\Omega), u_0 \in L^1(\partial \Omega)$. Then there exists $u \in L^1(\Omega)$ such that

$$-\int_{\Omega} u\Delta\varphi = \int_{\Omega} f\varphi - \int_{\partial\Omega} u_0 \frac{\partial\varphi}{\partial n} \quad \forall \varphi \in W^{2,\infty}(\Omega) \cap W^{1,\infty}_0(\Omega).$$

Proof:

Let $f_n \in \mathcal{C}(\overline{\Omega})$ and $u_{0n} \in \mathcal{C}(\partial \Omega)$ such that

$$f_n \delta \to f \delta$$
 in $L^1(\Omega)$, $u_{0n} \to u_0$ in $L^1(\partial \Omega)$

Then (u_n) is a sequence of regular solutions such that

$$-\int_{\Omega} u_n \Delta \varphi = \int_{\Omega} f_n \varphi - \int_{\partial \Omega} u_{0n} \frac{\partial \varphi}{\partial n} \quad \forall \varphi \in W^{2,\infty}(\Omega) \cap W^{1,\infty}_0(\Omega).$$

COMPLUTENSE MADRID

Existence II

By linearity $u_n - u_m$ is a solution of the problem $f_n - f_m$ and $u_{0n} - u_{0m}$ so

$$|u_n - u_m||_{L^1(\Omega)} \le C(||f_n\delta - f_m\delta||_{L^1(\Omega)} + ||u_{n0} - u_{m0}||_{L^1(\partial\Omega)})$$

Since (f_n) and (u_{0n}) are Cauchy, so is (u_n) . Hence, there exists $u \in L^1(\Omega)$ such that

 $u_n \to u \text{ in } L^1(\Omega)$

For $\varphi \in W^{2,\infty}$ we have $\varphi, \Delta \varphi \in L^{\infty}(\Omega)$ and $\frac{\partial \varphi}{\partial n} \in L^{\infty}(\partial \Omega)$. Therefore

$$-\int_{\Omega} u\Delta\varphi = \int_{\Omega} f\varphi - \int_{\partial\Omega} u_0 \frac{\partial\varphi}{\partial n} \quad \forall \varphi \in W^{2,\infty}(\Omega) \cap W^{1,\infty}_0(\Omega).$$

By convergence, u also satisfies the continuous dependence equation.

COMPLUTENSE

Outline

Very weak solutions of $-\Delta u = f$

- Uniqueness result
- Continuous dependence
- Existence result

• Uniqueness result. Comparison principle

- Kato's inequality for $u \in L^1_{loc}(\Omega)$
- Uniqueness via Kato's inequality for $u \in W_0^{1,1}$
- Weights as boundary conditions. Beyond Hardy's inequality

Uniqueness result. Comparison principle

Other than continuous dependence, the other trick to show uniqueness is the *comparison principle* (equivalently *maximum principle* or *monotonicity*) for smooth functions

$$\begin{cases} -\Delta u \leq 0 & \Omega \\ u \leq 0 & \partial \Omega \end{cases} \implies u \leq 0 \quad \Omega$$

We can prove the uniqueness:

Proof of the uniqueness via comparison. Smooth case.

Then, the difference of two solutions $u = u_1 - u_2$ satisfies this

 $u_1 \leq u_2.$

Then same holds for $u_2 - u_1$, therefore

$$u_2 \leq u_1.$$

Uniqueness via comparison principle

For smooth functions

$$\begin{cases} -\Delta u \leq 0 & \Omega \\ u \leq 0 & \partial \Omega \end{cases} \implies u \leq 0 \quad \Omega$$

Question: does this work for very weak solutions? Answer: YES

Theorem

Let $u \in L^1(\Omega)$ such that

$$-\int_{\Omega} u\Delta\varphi \leq 0 \quad \forall 0 \leq \varphi \in W^{2,\infty}(\Omega) \cap W^{1,\infty}_0(\Omega)$$

Then

$$u \leq 0,$$
 a.e. Ω

Uniqueness result. Comparison principle

$$-\int_{\Omega} u\Delta\varphi \leq 0 \quad \forall 0 \leq \varphi \in W^{2,\infty}(\Omega) \cap W^{1,\infty}_0(\Omega) \implies u \leq 0, \text{ a.e. } \Omega$$

Idea of the proof for $u \in L^p(\Omega)$.

Take

$$-\Delta \varphi = \mathrm{sign}_+(u), \; \Omega \qquad \varphi = 0, \; \partial \Omega.$$

Which is $0 \leq \varphi \in W^{2,p'}(\Omega) \cap W_0^{1,p'}(\Omega)$. Take $0 \leq \varphi_n \in W^{2,\infty}(\Omega) \cap W_0^{1,\infty}(\Omega)$ such that $\varphi_n \to \varphi$ in $W^{2,p'}(\Omega)$ Then

$$\int_{\Omega} u_+ \le 0.$$

Therefore $u_+ = 0$. Hence $u \leq 0$.

IVERSIDAD MDI LETTO A D

Very weak solutions of $-\Delta u = f$

- Uniqueness result
- Continuous dependence
- Existence result
- Uniqueness result. Comparison principle
- Kato's inequality for $u \in L^1_{loc}(\Omega)$
- Uniqueness via Kato's inequality for $u \in W_0^{1,1}$
- Weights as boundary conditions. Beyond Hardy's inequality

Kato's inequality for $u \in L^1(\Omega)$

Definition

Let $u, f \in L^1_{loc}(\Omega)$. We say that $-\Delta u \leq f$ in $\mathcal{D}'(\Omega)$ if

$$-\int_{\Omega} u\Delta\varphi \leq \int_{\Omega} f\varphi \quad \forall 0 \leq \varphi \in W^{2,\infty}_{c}(\Omega)$$

Notice that $d(\operatorname{supp} \varphi, \partial \Omega) > 0$. No information on the boundary conditions.

Theorem (Kato's inequality^a)

^aM. Marcus and L. Véron. *Nonlinear Second Order Elliptic Equations Involving Measures.* Vol. 22. De Gruyter, 2013.

Assume that $u, f \in L^1_{loc}(\Omega)$ and $-\Delta u \leq f$ in $\mathcal{D}'(\Omega)$. Then:

$$-\Delta |u| \le f \operatorname{sign} u \text{ in } \mathcal{D}'(\Omega).$$

2)
$$-\Delta u_+ \leq f \operatorname{sign}_+ u$$
 in $\mathcal{D}'(\Omega)$.

IVEBSIDAD

Very weak solutions of $-\Delta u = f$

- Uniqueness result
- Continuous dependence
- Existence result
- Uniqueness result. Comparison principle
- Kato's inequality for $u \in L^1_{loc}(\Omega)$
- Uniqueness via Kato's inequality for $u \in W_0^{1,1}$
- Weights as boundary conditions. Beyond Hardy's inequality

Theorem (Maximum principle)

$$\begin{cases} -\Delta u \le 0 \text{ in } \mathcal{D}'(\Omega) \\ u \in W_0^{1,1}(\Omega) \implies u \le 0 \end{cases}$$
(8)

Proof of the uniqueness result using Kato's inequality for $u \in W_0^{1,1}$.

Let $u_1, u_2 \in W_0^{1,1}(\Omega)$ be two solution. Let $u = u_1 - u_2$. We have that $|u| \in W_0^{1,1}(\Omega)$ and $-\Delta |u| \le 0 \cdot \operatorname{sign} u = 0$. Therefore $|u| \le 0$.

IVEBSIDAD

Very weak solutions of $-\Delta u = f$

- Uniqueness result
- Continuous dependence
- Existence result
- Uniqueness result. Comparison principle
- Kato's inequality for $u \in L^1_{loc}(\Omega)$
- Uniqueness via Kato's inequality for $u \in W_0^{1,1}$
- Weights as boundary conditions. Beyond Hardy's inequality

Weights as boundary conditions. Beyond Hardy's inequality

Theorem

Hardy inequality Let $u \in W^{1,p}(\Omega)$, p > 1. Then

$$\frac{u}{\delta} \in L^p(\Omega) \iff u \in W^{1,p}_0(\Omega).$$

Let $u \in W^{1,1}(\Omega)$. Then

$$\frac{u}{\delta} \in L^1(\Omega) \implies u \in W^{1,1}_0(\Omega).$$

However \Leftarrow .

QUESTION: Can we use $\frac{u}{\delta} \in L^1(\Omega)$ as boundary condition in $L^1(\Omega)$?

QUESTION: Can $\frac{u}{\delta} \in L^1(\Omega)$ be b.c. in $L^1(\Omega)$?

ANSWER: YES

Theorem

Let u and r > 1 be such that

$$\begin{cases} -\Delta u \leq 0 \text{ in } \mathcal{D}'(\Omega), \\ \frac{u}{\delta^r} \in L^1(\Omega). \end{cases}$$

Then $u \leq 0$.

This guaranties uniqueness. This does not guaranty existence. However, we will see there are problem in which $\frac{u}{\lambda r} \in L^1(\Omega)$ holds.

Remark

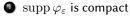
The result holds for r = 1. Work in preparation.

⁶We write $-\Delta u \leq f$ in $\mathcal{D}'(\Omega)$: $-\int_{\Omega} u\Delta \varphi \leq \int_{\Omega} \varphi f$ for all $0 \leq \varphi \in W^{2,\infty}_c(\Omega)$.

An auxiliary function

Let
$$\psi \in \mathcal{C}^{\infty}(\mathbb{R})$$
 be \nearrow s.t. $\psi(s) = \begin{cases} 1, & s \ge 1, \\ 0, & s \le 0. \end{cases}$
Define, for $x \in \Omega$: $\varphi_{\varepsilon}(x) = \psi\left(\frac{\delta(x) - \varepsilon}{\varepsilon}\right) = \begin{cases} 0 & \text{if } \delta(x) \le \varepsilon, \\ 1 & \text{if } \delta(x) \ge 2\varepsilon. \end{cases}$

Then:



- $\ \, {\bf 0} \ \, \delta\varphi_{\varepsilon} \to \delta \ {\rm in} \ L^{\infty}(\Omega).$
- $In the multiindex notation <math>\|D^{\alpha}\varphi_{\varepsilon}\|_{\infty} \leq C\varepsilon^{-|\alpha|}$
- For $|\alpha| \ge 1$ we have $\operatorname{supp} D^{\alpha} \varphi_{\varepsilon}(x) \subset \{\varepsilon \le \delta(x) \le 2\varepsilon\}.$

Theorem (Comparison Principle in $L^1(\Omega, \delta^{-r})$)

Let u and r > 1 be such that $-\Delta u \leq 0$ in $\mathcal{D}'(\Omega)$ and $\frac{u}{\delta^r} \in L^1(\Omega)$. Then $u \leq 0$.

Proof.

Let $\eta \in W^{2,\infty}(\Omega) \cap W^{1,\infty}_0(\Omega)$. Then $\varphi_{\varepsilon}\eta \in W^{2,\infty}_c(\Omega)$. We have

$$\begin{split} \delta^{r} \Delta(\eta \varphi_{\varepsilon}) &= \delta \varphi_{\varepsilon} \Delta \eta + \delta^{r} \nabla \varphi_{\varepsilon} \cdot \nabla \eta + \delta^{r} \eta \Delta \varphi_{\varepsilon} \\ &= \delta \varphi_{\varepsilon} \Delta \eta + \delta^{r} \nabla \varphi_{\varepsilon} \cdot \nabla \eta + \frac{\eta}{\delta} \delta^{r+1} \Delta \varphi_{\varepsilon} \\ &\to \delta^{r} \Delta \eta \quad \text{in } L^{\infty}(\Omega). \end{split}$$

Then

$$0 \ge -\int_{\Omega} u\Delta(\varphi_{\varepsilon}\eta) = \int_{\Omega} \underbrace{\frac{u}{\delta^{r}}}_{L^{1}} \underbrace{\delta^{r}\Delta(\varphi_{\varepsilon}\eta)}_{L^{\infty}} \to -\int_{\Omega} \frac{u}{\delta^{r}} \delta^{r}\Delta\eta = -\int_{\Omega} u\Delta\eta.$$

Last comments

Regularity of very weak was studied in:

J. I. Díaz and J. M. Rakotoson. "On the differentiability of very weak solutions with right hand side data integrable with respect to the distance to the boundary". In: *Journal of Functional Analysis* 257.3 (2009), pp. 807–831.

Motivations & Applications

Very weak solutions of $-\Delta u = f$

3 Very weak solutions of $-\Delta u + Vu = f, V \ge 0$

Very weak solutions $-\Delta u + \vec{b} \cdot \nabla u + Vu = f$

3 Very weak solutions of $-\Delta u + Vu = f, V \ge 0$

- The case $V \leq C\delta^{-2}$. Hardy's inequality
- Existence for $V \in L^1_{loc}$ Uniqueness for $V \in L^1(\Omega, \delta)$
- Uniqueness when $V \ge c\delta^{-r}, r > 2$

The comfortable setting

In the section we aim to work on the following PDE

$$\begin{cases} -\Delta u + Vu = f, & \text{in } \Omega\\ u = 0, & \text{on } \partial \Omega \end{cases}$$

when $V \in L^1_{loc}(\Omega)$. It is well known

 $\begin{cases} f \in L^2(\Omega), \\ V \in L^{\infty}(\Omega) \end{cases} \implies \text{Existence and Uniqueness of } u \in H^1_0(\Omega) \end{cases}$

We apply Lax-Milgram to the following problem

$$\begin{cases} \text{Find } u \in H_0^1(\Omega) \text{ such that } \forall \varphi \in H_0^1(\Omega) \\ \int_{\Omega} \nabla u \nabla \varphi + \int_{\Omega} V u \varphi = \int_{\Omega} f \varphi \end{cases}$$

David Gómez-Castro (UCM) (9

Very weak solutions of $-\Delta u + Vu = f, V \ge 0$ • The case $V \leq C\delta^{-2}$. Hardy's inequality

- Existence for $V \in L^1_{loc}$ Uniqueness for $V \in L^1(\Omega, \delta)$
- Uniqueness when $V \ge c\delta^{-r}, r > 2$

The "easy" cases: $V \leq c\delta^{-2}$

Due to Hardy's inequality

$$u\delta^{-1} \in L^2(\Omega), \quad \forall u \in H^1_0(\Omega)$$
 (10)

Hence

$$H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$$
(11)

$$(u,\varphi) \quad \mapsto \quad \int_{\Omega} V u\varphi = \int_{\Omega} \underbrace{(V\delta^2)}_{L^{\infty}} \underbrace{(u\delta^{-1})}_{L^2} \underbrace{(\varphi\delta^{-1})}_{L^2} \tag{12}$$

is bilinear continuous. Hence we can apply Lax-Milgram.

It is known⁷ that $V \le c\delta^{-\alpha}, \alpha \in (0, 1)$ $u \in W_0^{1,1}(\Omega), \qquad \|\nabla u\|_{L^{\frac{N}{N-1+\alpha},\infty}(\Omega)} \le \|f\|_{L^1(\Omega,\delta^{\alpha})}$ (13)

⁷J. I. Díaz and J. M. Rakotoson. "On very weak solutions of Semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary". In: *Discrete and Continuous Dynamical Systems* 27.3 (2010), pp. 1037–1058.

Let $\mu(x)$ be a function. We define

$$L^p(\Omega,\mu) = \left\{ f \text{ measurable } : \int_{\Omega} |f|^p \mu < +\infty \right\}$$

3 Very weak solutions of $-\Delta u + Vu = f, V \ge 0$

- The case $V \leq C\delta^{-2}$. Hardy's inequality
- Existence for $V \in L^1_{loc}$
- Uniqueness for $V \in L^1(\Omega, \delta)$
- Uniqueness when $V \ge c\delta^{-r}, r > 2$

Existence for $V \in L^1_{loc}$

Theorem (Díaz & Rakotoson^a)

^{*a*}J. I. Díaz and J. M. Rakotoson. "On very weak solutions of Semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary". In: *Discrete and Continuous Dynamical Systems* 27.3 (2010), pp. 1037–1058.

If $V \in L^1_{loc}(\Omega)$ and $f \in L^1(\Omega, \delta)$ then there exists $u \in L^1(\Omega)$ solution of

$$\begin{cases} Vu \in L^{1}(\Omega, \delta), \text{ and } \forall \varphi \in W^{2, \infty}_{c}(\Omega) \\ -\int_{\Omega} u\Delta \varphi + \int_{\Omega} Vu\varphi = \int_{\Omega} f\varphi, \end{cases}$$

If $V, f \in L^1(\Omega, \delta)$ then there exists $u \in L^1(\Omega)$ solution of

$$\begin{cases} Vu \in L^{1}(\Omega, \delta), \text{ and } \forall \varphi \in W^{2, \infty}(\Omega) \cap W^{1, \infty}_{0}(\Omega), \\ -\int_{\Omega} u\Delta \varphi + \int_{\Omega} Vu\varphi = \int_{\Omega} f\varphi, \end{cases}$$

Some remarks

• Extra regularity is known:

$$u \in L^{N',\infty} \cap W^{1,q}(\Omega,\delta).$$

Some extra bounds are known for at least one of the solutions:

1
$$\|u\|_{L^{N',\infty}} \le \|f\delta\|_{L^1}$$

If
$$V = \delta^{-\alpha}$$
 then $V\delta \in L^1(\Omega) \iff \alpha < 2$.

Existence for $V \in L^1_{loc}$

The argument is the following. Let $T_k(s) = \begin{cases} s, & |s \le k \\ k \operatorname{sign} s, & |s| > k. \end{cases}$

$$V_k = T_k(V), \qquad f_k = T_k(f).$$

Let u_k be the weak solution of

$$-\Delta u_k + V_k u_k = f_k, \Omega, \qquad u_k = 0, \partial \Omega$$

Then, applying continuous dependence:

$$u_k \stackrel{L^1(\Omega)}{\longrightarrow} u, \qquad \text{as } k \to +\infty.$$

Besides $Vu\delta \in L^1(\Omega)$. Through a Dunford-Pettis argument:

•
$$V_k u_k \delta \rightarrow V u \delta$$
 in $L^1_{loc}(\Omega)$.

2 If $V\delta \in L^1(\Omega)$ then $V_k u_k \delta \rightharpoonup V u\delta$ in $L^1(\Omega)$

Very weak solutions of $-\Delta u + Vu = f, V \ge 0$

- The case $V \leq C\delta^{-2}$. Hardy's inequality
- Existence for $V \in L^1_{loc}$
- Uniqueness for $V \in L^1(\Omega, \delta)$
- Uniqueness when $V \ge c\delta^{-r}, r > 2$

Proof of uniqueness for $V \in L^1(\Omega, \delta)$

Step 1. how that $\varphi \ge 0$

$$-\int_{\Omega}|u|\Delta arphi+\int_{\Omega}V|u|arphi\leq\int_{\Omega}farphi$$

Proof.

Let

$$-\Delta \varphi = 1, \Omega \quad \varphi = 0 \partial \Omega.$$

By considering a intelligent test function $\varphi \gamma(u_n)$ we obtain

$$\int_{\Omega} \nabla k(u_n) \nabla \varphi + \int_{\Omega} V_k u_k \gamma(u_n) \le \int_{\Omega} f \varphi \gamma(u_n) \\ - \int_{\Omega} k(u_n) \Delta \varphi + \int_{\Omega} V_n u_n \gamma(u_n) \le \int_{\Omega} f \varphi \gamma(u_n)$$

We pass to the limit in n. As $\gamma \to \text{sign}$ we have $k \to |\cdot|$.

David Gómez-Castro (UCM)

Uniqueness for $V \in L^1(\Omega, \delta)$

Step 2. Take two solutions u_1, u_2 and $u = u_1 - u_2$.

$$-\int_{\Omega}|u|\Delta\varphi+\int_{\Omega}V|u|\varphi\leq 0$$

Step 3. Then we define $\varphi_1 \in W^{2,\infty}(\Omega) \cap W^{1,\infty}_0(\Omega)$:

$$-\Delta \varphi_1 = \lambda_1 \varphi_1, \Omega \qquad \varphi_1 = 0, \partial \Omega.$$

Hence

$$\int_{\Omega} |u| \underbrace{(\lambda_1 + V)\varphi_1}_{>0} \le 0$$

Therefore u = 0.

Very weak solutions of $-\Delta u + Vu = f, V \ge 0$

- The case $V \leq C\delta^{-2}$. Hardy's inequality
- Existence for $V \in L^1_{loc}$
- Uniqueness for $V \in L^1(\Omega, \delta)$
- Uniqueness when $V \ge c\delta^{-r}, r > 2$

Uniqueness when $V \ge c \delta^{-r}, r > 2$ l

Theorem

Let $0 \leq V \in L^1_{loc}(\Omega)$ and u be such that

$$\begin{cases} -\int_{\Omega} u\Delta\varphi + \int_{\Omega} Vu\varphi = 0 \quad \forall \varphi \in W^{2,\infty}_{c}(\Omega), \\ Vu \in L^{1}_{loc}(\Omega), \quad \frac{u}{\delta^{s}} \in L^{1}(\Omega), s > 1. \end{cases}$$

Then u = 0.

Proof.

We write $-\Delta u = -Vu \in L^1_{loc}(\Omega)$. By Kato's inequality

$$-\Delta|u| \le -Vu \operatorname{sign}(u) = -V|u| \le 0 \text{ in } \mathcal{D}'(\Omega).$$

Since $|u| \in L^1(\Omega, \delta^{-s})$ we have that $|u| \leq 0$. Hence u = 0.

David Gómez-Castro (UCM)

Uniqueness when $V \ge c\delta^{-r}, r > 2$ II

If $V \ge C\delta^{-r}$ with C > 0. We have

$$0 \le |u|\delta^{1-r} \le \frac{1}{C}V|u|\delta \in L^1(\Omega).$$

Therefore:

Corollary (^a)

^{*a*}J. I. Díaz, D. Gómez-Castro, J. M. Rakotoson, and R. Temam. "Linear diffusion with singular absorption potential and/or unbounded convective flow: the weighted space approach". 2017.

Let $C\delta^{-r} \leq V \in L^1_{loc}(\Omega)$, with C > 0, r > 2, and $f\delta \in L^1(\Omega)$. Then, there exists a unique v.w.s.

- Motivations & Applications
- 2) Very weak solutions of $-\Delta u = f$
 - Very weak solutions of $-\Delta u + Vu = f, V \ge 0$
- 4 Very weak solutions $-\Delta u + \vec{b} \cdot \nabla u + Vu = f$

4 Very weak solutions $-\Delta u + \vec{b} \cdot \nabla u + Vu = f$

- Conditions on \vec{b}
- Definition of very weak solution
- Study of the dual problem
- Lorentz spaces
- Regularity results for the dual problem
- Existence of very weak solutions
- A comparison principle with transport
- Uniqueness when $V \ge c\delta^{-r}, r > 2$

COMPLUTENSE MADRID

Outline

Very weak solutions $-\Delta u + \vec{b} \cdot \nabla u + Vu = f$

• Conditions on \vec{b}

- Definition of very weak solution
- Study of the dual problem
- Lorentz spaces
- Regularity results for the dual problem
- Existence of very weak solutions
- A comparison principle with transport
- Uniqueness when $V \ge c\delta^{-r}, r > 2$

Conditions on \vec{b}

We will consider the conditions

$$\begin{cases} \operatorname{div} \vec{b} = 0 & \Omega, \\ \vec{b} \cdot \vec{n} = 0 & \partial\Omega. \end{cases}$$
(14)

In the following sense:

$$\int_{\Omega} \varphi(\vec{b} \cdot \nabla u) = -\int_{\Omega} u(\vec{b} \cdot \nabla \varphi), \qquad \forall \varphi \in W^{2,\infty}(\Omega) \cap W^{1,\infty}_0(\Omega).$$

Remark

For smooth functions $\operatorname{div}(\varphi \vec{b}) = \varphi \operatorname{div} \vec{b} + \vec{b} \cdot \nabla \varphi$

COMPLUTENSE

Outline

4 Very weak solutions $-\Delta u + ec{b} \cdot abla u + Vu = f$

• Conditions on \vec{b}

• Definition of very weak solution

- Study of the dual problem
- Lorentz spaces
- Regularity results for the dual problem
- Existence of very weak solutions
- A comparison principle with transport
- Uniqueness when $V \ge c\delta^{-r}, r > 2$

Definition of very weak solution

Definition

Let f be in $L^1(\Omega; \delta)$ and $\vec{b} \in L^{N,1}(\Omega)^N$ with $\operatorname{div}(\vec{b}) = 0$ in $\mathcal{D}'(\Omega), \vec{b} \cdot \vec{n} = 0$ on $\partial\Omega$, V measurable and non negative function. A very weak solution u is a function $u \in L^{N',\infty}(\Omega)$ such that

$$Vu \in L^1(\Omega; \delta) \text{ and } \int_{\Omega} u \big[-\Delta \phi - \vec{b} \cdot \nabla \phi + V\phi \big] dx = \int_{\Omega} f\phi \, dx, \quad (15)$$

for all $\phi \in C^2(\overline{\Omega})$ with $\phi = 0$ on $\partial\Omega$, if $V \in L^1(\Omega; \delta)$, or for all $\phi \in C^2_c(\Omega)$ if $V \in L^1_{loc}(\Omega)$.

IVERSIDAD

Outline

4 Very weak solutions $-\Delta u + ec{b} \cdot abla u + Vu = f$

- Conditions on \vec{b}
- Definition of very weak solution

• Study of the dual problem

- Lorentz spaces
- Regularity results for the dual problem
- Existence of very weak solutions
- A comparison principle with transport
- Uniqueness when $V \ge c\delta^{-r}, r > 2$

From monotonicity methods to the study of dual solutions

The methods we used in the previous equations are no longer easy. Nonetheless we write

$$\int_{u} u(-\Delta \psi - \vec{b} \cdot \nabla \psi + V\psi) = \int_{u} f\psi.$$

Let

$$L^*\psi = -\Delta\psi - \vec{b}\cdot\nabla\psi + V\psi.$$

When $\vec{b} = 0$ it was easy to find functions ψ very regular such that

$$L^*\psi = 1 \qquad L^*\psi = \operatorname{sign}_+ u.$$

This kind of arguments is harder now.

To obtain this results this we do regularity escalation in Lorentz spaces.

David Gómez-Castro (UCM)

IVERSIDAD MDLUTENTON

4 Very weak solutions $-\Delta u + \vec{b} \cdot \nabla u + Vu = f$

- Conditions on \vec{b}
- Definition of very weak solution
- Study of the dual problem

Lorentz spaces

- Regularity results for the dual problem
- Existence of very weak solutions
- A comparison principle with transport
- Uniqueness when $V \ge c\delta^{-r}, r > 2$

Lorentz spaces

Let $f : \Omega \to \mathbb{R}$ be measurable. The distribution function of $f: \mu(t) = |\{x \in u : |f(x)| > t\}|$. The decreasing rearrangement of $f: f^*(s) = \sup\{t \ge 0 : \mu(t) > s\}$

Lorentz defined the following spaces ⁸⁹: Given $0 < p, q \leq \infty$ define

$$||f||_{(p,q)} = \begin{cases} \left(\int_0^\infty \left(t^{\frac{1}{p}} f^*(t) \right)^q \frac{dt}{t} \right)^{\frac{1}{q}} & q < +\infty, \\ \sup_{t>0} t^{\frac{1}{p}} f^*(t) & q = +\infty. \end{cases}$$

and $L^{(p,q)}(\Omega) = \{f \text{ measurable in } \Omega : \|f\|_{(p,q)} < +\infty \}$

⁸G. Lorentz. "Some new functional spaces". In: *Annals of Mathematics* 51.2 (1950), pp. 37–55.

⁹G. Lorentz. "On the theory of spaces Λ ". In: *Pacific Journal of Mathematics* 1.3 (1951), pp. 411–430.

David Gómez-Castro (UCM)

An alternative definition of Lorentz spaces

Let $1\leqslant p\leqslant +\infty,\ 1\leqslant q\leqslant +\infty$. Let $u\in L^0(\Omega).$ We define

$$||u||_{p,q} = \begin{cases} \left[\int_{\Omega_*} \left[t^{\frac{1}{p}} |u|_{**}(t) \right]^q \frac{dt}{t} \right]^{\frac{1}{q}} & q < +\infty, \\ \sup_{0 < t \leq |\Omega|} t^{\frac{1}{p}} |u|_{**}(t) & q = +\infty \end{cases} \qquad \qquad |u|_{**}(t) = \frac{1}{t} \int_0^t |u|_{*}(\sigma) d\sigma.$$

We define $L^{p,q}(\Omega) = \{f \text{ measurable in } \Omega : \|u\|_{p,q} < +\infty \}.$

Proposition (Corollary 1.4.1 in^a)

^aJ.-M. Rakotoson. *Réarrangement Relatif.* Vol. 64. Mathématiques et Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

Let 1 . Then

$$L^{p,q}(\Omega) = L^{(p,q)}(\Omega)$$

with equivalent quasi-norms.

Properties of Lorentz spaces

The functionals $\|\cdot\|_{L^{p,q}}$ do not, in general, satisfy the triangle inequality. However, $L^{p,q}$ is a quasi-Banach space.

The following properties are known¹⁰:

$$lacksquare$$
 If $0 and $0 < q < r \leq +\infty$ then $L^{(p,q)} \subset L^{(p,r)}$$

2
$$L^{(p,p)} = L^p$$
 for all $p \ge 1$.

• Let
$$1 \leq p, q < \infty$$
. Then $(L^{(p,q)}(\Omega))' = L^{(p',q')}(\Omega)$.

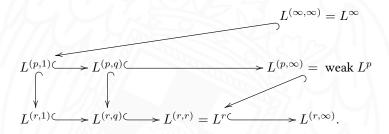
- If q < r < p then $L^{(p,\infty)}(\Omega) \cap L^{(q,\infty)}(\Omega) \subset L^r(\Omega)$ (even for Ω unbounded)
- **6** In a bounded domain, if r < p then $L^{(p,\infty)}(\Omega) \subset L^{r}(\Omega)$

¹⁰L. Grafakos. *Classical Fourier Analysis*. Vol. 249. Graduate Texts in Mathematics. New York, NY: Springer New York, 2009, pp. 1–1013.

David Gómez-Castro (UCM)

Lorentz spaces. Inclusion diagram

We can write the diagram of inclusions for $1 \leq q \leq r$



Sobolev spaces of Lorentz spaces

We can define the Sobolev spaces associated to this spaces. In general, let $X \subset L^0$. We define the

 $W^m X = \{ f \in X : \forall \alpha \text{ such that } |\alpha| \le m \text{ we have } D^\alpha f \in X \}$ (16)

where D^{α} is the generalized derivative of order α (in the multiindex notation).

The highlights

Remark

In order to read the following slides it is enough to keep in mind the following

$$1 \le p < q < r \implies L^r \subset L^{q,1} \subset L^q \subset L^{q,\infty} \subset L^p$$

Outline

4

IVERSIDAD MDLUTENTON

Very weak solutions $-\Delta u + \vec{b} \cdot \nabla u + Vu = f$

- Conditions on \vec{b}
- Definition of very weak solution
- Study of the dual problem
- Lorentz spaces
- Regularity results for the dual problem
- Existence of very weak solutions
- A comparison principle with transport
- Uniqueness when $V \ge c\delta^{-r}, r > 2$

Proposition

Let $T \in H^{-1}(\Omega)$ (dual of $H_0^1(\Omega)$), \vec{b} satisfying (5) and let $0 \le V \in L^0(\Omega)$. Define $W = \left\{ \varphi \in H_0^1(\Omega) : V\varphi^2 \in L^1(\Omega) \right\}$, and let W' denotes its dual. Then, there exists a unique $\phi \in H_0^1(\Omega)$, with $V\phi^2 \in L^1(\Omega)$, such that

$$(\mathcal{P})_{V,T} \qquad -\Delta\phi - \vec{b} \cdot \nabla \phi + V\phi = T \text{ in } W'. \tag{17}$$

Moreover,

$$\begin{split} ||\phi||_{H^1_0(\Omega)} &\leq c ||T||_{H^{-1}(\Omega)}, \\ \left(\int_{\Omega} V \phi^2 dx\right)^{\frac{1}{2}} &\leqslant c ||T||_{H^{-1}(\Omega)}, \end{split}$$

If furthermore $V \in L^1_{loc}(\Omega)$, then the equation (17) holds in the sense of distributions in $\mathcal{D}'(\Omega)$

David Gómez-Castro (UCM)

Proposition (Approximation by bounded potentials)

Let $T \in H^{-1}(\Omega)$, \vec{b} and V. Then, the sequence $\phi_k \in H^1_0(\Omega)$ of solutions of the problems

$$(\mathcal{P})_{V_k,T}: \int_{\Omega} \nabla \phi_k \cdot \nabla \psi dx - \int_{\Omega} \vec{b} \nabla \phi_k \phi dx + \int_{\Omega} V_k \phi_k \psi dx = \langle T, \psi \rangle, \quad \forall \psi \in H^1_0(\Omega),$$

converges to ϕ strongly in $H_0^1(\Omega)$, where ϕ is the unique solution of $(\mathcal{P})_{V,T}$ found in *Proposition 2.*

Proposition

Under the same assumptions as for Proposition 2 (with $\lambda = 0$), if $T \ge 0, \ T \in L^1(\Omega) \cap H^{-1}(\Omega)$ then $\phi \ge 0$.

Proposition (L^{∞} -estimates)

Let ϕ be the solution of (17) when $T \in L^{\frac{N}{2},1}(\Omega)$, $V \ge 0$. Then $\phi \in L^{\infty}(\Omega)$ and there exists a constant $K_N(\Omega)$ independent of \vec{b} and V such that

 $||\phi||_{L^{\infty}(\Omega)} \leq K_N(\Omega)||T||_{L^{\frac{N}{2},1}(\Omega)}.$

Proposition

Let $N \ge 2$, and let ϕ be a solution of (17) when

$$T = -\operatorname{div}(\vec{F}), \quad \vec{F} \in L_V = \begin{cases} L^{N,1}(\Omega)^N & N \ge 3, \\ L^{2+\varepsilon}(\Omega)^2 & N = 2. \end{cases}$$

Then $\phi \in L^{\infty}(\Omega)$ and there exists a constant $K_N(\Omega) > 0$ independent of \vec{b} and V such that

 $||\phi||_{L^{\infty}(\Omega)} \leq K_N(\Omega)||\vec{F}||_{L_V}.$

Proposition ($W^1L^{p,q}$ -estimate)

Let $N \ge 2$. Assume that there exists p > N and $q \in [1, +\infty]$, such that

$$\begin{cases} \vec{b} \in L^{p,q}(\Omega)^N \quad V \ge 0, \ V \in L^{r,q}(\Omega), \ r = \frac{Np}{N+p}, \\ T = -\operatorname{div}(\vec{F}) \quad \text{with } \vec{F} \in L^{p,q}(\Omega)^N. \end{cases}$$

Then, the unique solution ϕ of the equation (17) belongs to $W^1L^{p,q}(\Omega)$. Moreover, there exists a constant $K_{pq} > 0$ independent of \vec{b} such that :

$$||\nabla\phi||_{L^{p,q}(\Omega)} \leqslant K_{pq} \left(1 + ||\vec{b}||_{L^{p,q}} + ||V||_{L^{r,q}}\right) ||F||_{L^{p,q}(\Omega)^{N-1}}$$

Proposition

Let \vec{b} and \vec{F} be in $L^{p,\infty}(\Omega)^N$ for some p > N. Then, the solution of (17) satisfies

 $\phi \in C^{0,\alpha}(\overline{\Omega})$ with $\alpha = 1 - \frac{N}{n}$.

Proposition ($W^2L^{p,q}(\Omega)$ regularity for p > N)

Let ϕ be the solution of (17) when $T \in L^{p,q}(\Omega)$, p > N, $q \in [1, +\infty]$. Assume, furthermore, that $\vec{b} \in L^{p,q}(\Omega)^N$ and $V \in L^{p,q}(\Omega)$. Then

 $\phi \in W^2 L^{p,q}(\Omega).$

Moreover, there exist constants c_{ε_0} , $K_{pqN} > 0$ such that

$$||\phi||_{W^{2}L^{p,q}(\Omega)} \leqslant \frac{K_{pqN}c_{\varepsilon_{0}}(1+||V||_{L^{p,q}}+||\vec{b}||_{L^{p,q}(\Omega)})}{1-K^{s}_{pq}\varepsilon_{0}||\vec{b}||_{L^{p,q}(\Omega)}}||T||_{L^{p,q}(\Omega)}.$$

The case where p = N can also be treated in the same way provided that the norm of \vec{b} in $L^{N,1}(\Omega)$ is small enough in the sense that

$$\vec{b}||_{L^{N,1}(\Omega)} \leqslant \theta K_{N1}^{s0} \text{ for some } \theta \in [0, 1[,$$

$$K_{N1}^{s0} = K_{N1}^{s} \sup_{\phi \in H_{0}^{1}(\Omega) \cap W^{2}L^{N,1}(\Omega)} \frac{||\nabla \phi||_{\infty}}{||\phi||_{W^{2}L^{N,1}}}.$$
(19)

Proposition (regularity in $W^2L^{N,1}(\Omega)$)

Let ϕ be the solution of (17) when $T \in L^{N,1}(\Omega)$, $V \in L^{N,1}(\Omega)$. Assume that \vec{b} satisfies relation (18). Then $\phi \in W^2 L^{N,1}(\Omega)$. Moreover, there exists a constant $K'_N(\Omega)$ (independent of \vec{b}) such that

$$||\phi||_{W^2L^{N,1}(\Omega)} \leqslant \frac{K'_N(\Omega)(1+||V||_{L^{N,1}})}{1-K^{s0}_{N1}||\vec{b}||_{L^{N,1}}} ||T||_{L^{N,1}(\Omega)}.$$

Here we want only to consider the space $\Lambda = (L^N (\text{Log } L)^{\frac{\beta}{N}})^N$ for $\beta > N - 1$. Indeed this space is included in $L^{N,1}(\Omega)$ and contains $L^p(\Omega)$ for all p > N.

Theorem (regularity in $W^2L^N(\Omega)$)

Let T and V be in $L^{N}(\Omega)$, $\vec{b} \in \Lambda$, $\operatorname{div}(\vec{b}) = 0$ and $\vec{b} \cdot \vec{n} = 0$ on $\partial\Omega$. Then the unique solution ϕ of (17) belongs to $W^{2}L^{N}(\Omega)$ and choosing $\varepsilon > 0$ such that $\varepsilon ||\vec{b}||_{\Lambda} \leq \frac{1}{2}$, there exists a constant $K_{\varepsilon} > 0$ such that

$$||\phi||_{W^2L^N(\Omega)} \leqslant \frac{K_{\varepsilon}(1+||\vec{b}||_{\Lambda}+||V||_{L^N})}{1-\varepsilon||\vec{b}||_{\Lambda}}||T||_{L^N(\Omega)}.$$

Outline

IVERSIDAD MDILITENCE

4 Very weak solutions $-\Delta u + \vec{b} \cdot \nabla u + Vu = f$

- Conditions on \vec{b}
- Definition of very weak solution
- Study of the dual problem
- Lorentz spaces
- Regularity results for the dual problem
- Existence of very weak solutions
- A comparison principle with transport
- Uniqueness when $V \ge c\delta^{-r}, r > 2$

Existence of very weak solutions

Theorem

Let $f \in L^1(\Omega; \delta)$. Let \vec{b} be in $L^{p,1}(\Omega)^N$ with $\operatorname{div}(\vec{b}) = 0$ in $\mathcal{D}'(\Omega)$, $\vec{b} \cdot \vec{n} = 0$ on $\partial \Omega$.

Furthermore, assume that either p > N or p = N and $||\vec{b}||_{L^{N,1}} < K_{N1}^{s0}$ (see (18)).

Then, there exists a very weak solution u of (15).

Furthermore, If $V \in L^{p,1}(\Omega)$, then the solution is unique.

Existence of very weak solutions. Sketch of proof

) Take
$$f \ge 0$$
. $-\Delta u_j + \vec{b}_j \cdot \nabla u_j + V_j u_j = f_j$

2 $||u_j||_{L^{N',\infty}} \le C ||\delta f_j||_{L^1(\Omega)}$

• E measurable. Take $-\Delta \phi_j - \vec{b}_j \cdot \nabla \phi_j = \chi_E$.

Hardy Littlewood inequality.

• $u_j \rightarrow u$ in $L^{N',\infty}(\Omega)$. We deduce strong convergence from boundedness in $W^{1,q}(\Omega, \delta)$ for q > 1 small.

• Check that $\|V\omega\delta\| \le C(1+\|\vec{b}\|_{L^{N,1}})\|f\delta\|_{L^1}$.

() $\vec{b}_j u_j \rightarrow bu$ in $L^1(\Omega)^N$, using pointwise convergence and Vitali's condition.

- **6** Dunford-Pettis argument $V_j u_j \delta \rightarrow V$.
- Pass to the limit in the equation.
- $\label{eq:started} \textbf{ If } V \in L^{p,1} \text{ take } \phi \in W^2 L^{N,1} \text{ solution of } -\Delta \phi \vec{b} \cdot \nabla \phi + V \phi = \mathrm{sign} \left(u \right)$

Outline

4

IVERSIDAD

Very weak solutions $-\Delta u + \vec{b} \cdot \nabla u + Vu = f$

- Conditions on \vec{b}
- Definition of very weak solution
- Study of the dual problem
- Lorentz spaces
- Regularity results for the dual problem
- Existence of very weak solutions
- A comparison principle with transport
- Uniqueness when $V \ge c\delta^{-r}, r > 2$

A comparison principle with transport I

Theorem (Comparison principle)

Let \overline{u} be in $L^1(\Omega; \delta^{-r}) \cap W^{1,1}_{\text{loc}}(\Omega)$, r > 1. Let $\overline{u} \in L^{N',\infty}(\Omega)$ and $\vec{b} \in L^{p,1}(\Omega)$ with p > N or p = N with a small norm. Assume that

$$L\overline{u} \doteq -\Delta\overline{u} + \operatorname{div}(\vec{b}\,\overline{u}) \leqslant 0 \text{ in } \mathcal{D}'(\Omega).$$

and $L\overline{u} \in L^1_{loc}(\Omega)$. Then

$$\overline{u} \leqslant 0$$
 in Ω .

A comparison principle with transport II

Corollary (Variant of Kato's inequality)

Let \overline{u} be in $W^{1,1}_{\text{loc}}(\Omega) \cap L^{N',\infty}(\Omega)$, $\overline{u} \in L^1(\Omega; \delta^{-r})$ for r > 1 and

 $ec{b} \in L^{N,1}(\Omega)^N$ with $\operatorname{div}(ec{b}) = 0, \ ec{b} \cdot ec{n} = 0.$

Assume furthermore that $L\overline{u} = -\Delta \overline{u} + \operatorname{div}(\vec{b}\overline{u})$ is in $L^1(\Omega; \delta)$. Then for all $\phi \in C^2(\overline{\Omega}), \ \phi = 0$ on $\partial\Omega, \phi \ge 0$ one has

$$\begin{split} & \quad \displaystyle \int_{\Omega} \overline{u}_{+}L^{*}\phi dx \leqslant \int_{\Omega} \phi \operatorname{sign}_{+}(\overline{u})L(\overline{u})dx, \\ & \quad \displaystyle \textcircled{O}_{\Omega} |u|L^{*}\phi dx \leqslant \int_{\Omega} \phi \operatorname{sign}\left(\overline{u}\right)L(\overline{u})dx, \\ & \quad \text{where } L^{*}\phi = -\Delta\phi - \vec{b}\cdot\nabla\phi = -\Delta\phi - \operatorname{div}(\vec{b}\phi) \end{split}$$

Outline

IVERSIDAD MDLLTTE

4 Very weak solutions $-\Delta u + \vec{b} \cdot \nabla u + Vu = f$

- Conditions on \vec{b}
- Definition of very weak solution
- Study of the dual problem
- Lorentz spaces
- Regularity results for the dual problem
- Existence of very weak solutions
- A comparison principle with transport
- $\bullet~$ Uniqueness when $V \geq c \delta^{-r}, r>2$

Uniqueness when $V \ge c\delta^{-r}, r > 2$

Theorem

Assume that $0 \leq V \in L^1_{loc}(u)$, and such that

 $\exists c > 0, V(x) \ge c \delta(x)^{-r}$, in a neighborhood U of the boundary, with r > 2.

Then, the v.w.s. u found is unique.

Sketch of Proof.

We have that

$$|u|\delta^{1-r} \le \frac{1}{c}V|u|\delta \in L^1(u).$$

Again take $u = u_1 - u_2$ and

$$L^*|u| \le -V|u|$$

Therefore u = 0.

Thank you for your attention

References I

- H. Brézis. Une équation non linéaire avec conditions aux limites dans L¹. 1971.
 - J. I. Díaz. Nonlinear Partial Differential Equations and Free Boundaries. London: Pitman, 1985.
 - J. I. Díaz and D. Gómez-Castro. "An Application of Shape Differentiation to the Effectiveness of a Steady State Reaction-Diffusion Problem Arising in Chemical Engineering". In: *Electronic Journal of Differential Equations* 22 (2015), pp. 31–45.
 - J. I. Díaz, D. Gómez-Castro, J. M. Rakotoson, and R. Temam. "Linear diffusion with singular absorption potential and/or unbounded convective flow: the weighted space approach". 2017.

COMPLUTENSE MADRID

References II

- J. I. Díaz and J. M. Rakotoson. "On the differentiability of very weak solutions with right hand side data integrable with respect to the distance to the boundary". In: *Journal of Functional Analysis* 257.3 (2009), pp. 807–831.
 - J. I. Díaz and J. M. Rakotoson. "On very weak solutions of Semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary". In: *Discrete and Continuous Dynamical Systems* 27.3 (2010), pp. 1037–1058.
- L. Grafakos. *Classical Fourier Analysis*. Vol. 249. Graduate Texts in Mathematics. New York, NY: Springer New York, 2009, pp. 1–1013.

References III

- J. Hernández, F. J. Mancebo, and J. M. Vega. "On the linearization of some singular, nonlinear elliptic problems and applications". In: *Annales de l'IHP Analyse non linéaire*. Vol. 19. 6. 2002, pp. 777–813.
- G. Lorentz. "On the theory of spaces Λ ". In: *Pacific Journal of Mathematics* 1.3 (1951), pp. 411–430.
- G. Lorentz. "Some new functional spaces". In: Annals of Mathematics 51.2 (1950), pp. 37–55.
- M. Marcus and L. Véron. Nonlinear Second Order Elliptic Equations Involving Measures. Vol. 22. De Gruyter, 2013.

References IV

J.-M. Rakotoson. *Réarrangement Relatif*. Vol. 64. Mathématiques et Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.