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2
Director of the Institute for Scientific Computing and Applied Mathematics
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Introduction

The aim of this conference is to study

−∆u+~b · ∇u+ V u = f

in the se�ing

V ∈ L1
loc(Ω), ~b ∈ LN (Ω)N , fδ ∈ L1(Ω)

where
δ(x) = d(x, ∂Ω).

The results of this talk correspond to
J. I. Dı́az, D. Gómez-Castro, J. M. Rakotoson, and R. Temam. “Linear
di�usion with singular absorption potential and/or unbounded convective
flow: the weighted space approach”. 2017
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Linearization of singular and/or degenerate
nonlinear equations

Consider
−∆ϕ(w) + div

(
~φ(w)

)
+ g(w) = f(x) in Ω (1)

Context: stability of the associated parabolic or hyperbolic equations.
ϕ↗. Take θ := ϕ(w) we get (~ψ = ~φ ◦ ϕ−1, h = g ◦ ϕ−1):

−∆θ + div
(
~ψ(θ)

)
+ h(θ) = f(x) in Ω, (2)

Take θ∞(x) a solution of (2), s.t. θ = 0 on ∂Ω.
Then the “formal linearization” around the solution θ∞(x):

~b(x) := ~ψ
(
θ∞(x)

)
V (x) = h′

(
θ∞(x)

)
.

~ψ′(r) and h′(r) present a singularity at r = 0 (see3)
3J. Hernández, F. J. Mancebo, and J. M. Vega. “On the linearization of some

singular, nonlinear elliptic problems and applications”. In: Annales de l’IHP Analyse
non linéaire. Vol. 19. 6. 2002, pp. 777–813.
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Application to shape di�erentiation

For Ω ⊂ Rn smooth let us take u(Ω) the solution of the problem{
−∆uΩ + β(uΩ) = f, Ω

uΩ = 0, ∂Ω

Take Ω0 fixed and consider

{deformation maps of Ω0} → L2(Rn)

Φ 7→ uΦ(Ω0)

Roughly speaking, Ω = Φ(Ω0).
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Application to shape di�erentiation. Our motivation.

Theorem (Dı́az & G-Ca)
aJ. I. Dı́az and D. Gómez-Castro. “An Application of Shape Di�erentiation to the

E�ectiveness of a Steady State Reaction-Di�usion Problem Arising in Chemical
Engineering”. In: Electronic Journal of Di�erential Equations 22 (2015), pp. 31–45.

Let Ω0 smooth, β ∈W 2,∞(R) then the map

F : W 1,∞(Rn,Rn) → H1
0 (Ω)

θ 7→ u(I+θ)(Ω0) ◦ (I + θ)

is di�erentiable at θ = 0. The directional derivative u′(θ) is the solution of the
problem {

−∆u′ + β′(u0)u′ = 0, Ω0

u′ + θ · ∇u0 = 0, ∂Ω0

(3)

where u0 = uΩ0 ∈ H1
0 (Ω)
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Application to shape di�erentiation: the non smooth
case

Let following reaction term is very frequent in chemical catalysis 4

g(s) = |s|q−1s, 0 < q < 1, De�ne β(s) = g(1)− g(1− s) (4)

Then the solution u may develop a flat zone N = {u = 1} (“dead core”)5

A first estimate:

Remark

V (x) = β′(u0(x))) ∼ d(x,N)−2 for x ∈ Ω \N. (5)

4The solution is w = 1, ∂Ω in Chemistry and N = {w = 0}. u = 0 on ∂Ω due
to a change of variable.

5J. I. Dı́az. Nonlinear Partial Di�erential Equations and Free Boundaries. London:
Pitman, 1985.
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The importance in the Schrödinger equation

If we consider the Schrödinger equation

i~
∂Ψ

∂t
= −∆Ψ + VΨ

the separation Ψ = u(x)T (t) yields

−∆u+ V u = Eu

Remark
Frequently in Physics the authors take

V (x) = d(x, ∂Ω)−α.
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The vorticity equation in fluid mechanics.

The stationary Navier-Stokes in 2D:

−∆~b+ (~b · ∇)~b+∇p = ~F

We get our problem taking the curl of the equation and se�ing

f = ~F · ~k, u = curl~b · ~k,

where ~k is the last element of the canonical basis in IR3.
Nevertheless, as far as we know no satisfactory theory is available in the
literature under the general condition that ~F · ~k ∈ L1(Ω; δ).
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Very weak solutions of −∆u = f

Let Ω be smooth and bounded. We consider the problem{
−∆u = f Ω,

u = u0 ∂Ω.

In this se�ing we have classically:
1 classical solution. u ∈ C2(Ω) ∩ C(Ω̄)

2 weak solution. Take a classical solution. Multiply the equation by
ϕ ∈ C2(Ω), ϕ = 0 in ∂Ω, integrate by parts:∫

Ω

(−∆u)ϕ =

∫
Ω

fϕ

−
∫

Ω

div(ϕ∇u) +

∫
Ω

∇u · ∇ϕ =

∫
Ω

fϕ

−
∫
∂Ω

(ϕ∇u) · n+

∫
Ω

∇u · ∇ϕ =

∫
Ω

fϕ∫
Ω

∇u · ∇ϕ =

∫
Ω

fϕ. (6)

For f ∈ L2(Ω) and u0 ∈ H1(Ω) we set

w.s. ≡

{
(6) ∀ϕ ∈ H1

0 (Ω)

u− u0 ∈ H1
0 (Ω)
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Very weak solutions of −∆u = f

3 very weak solution.6: Integrating by part again we have

−
∫

Ω

u∆ϕ =

∫
Ω

fϕ−
∫
∂Ω

u0
∂ϕ

∂n
(7)

For f ∈ L1(Ω, δ), u0 ∈ L1(∂Ω) we define

v.w.s. ≡

{
(7) ∀ϕ ∈W 2,∞(Ω) ∩W 1,∞

0 (Ω)

u ∈ L1(Ω)

6H. Brézis. Une équation non linéaire avec conditions aux limites dans L1. 1971.
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Uniqueness result

The di�erence of two solutions u = u1 − u2 satisfies

−
∫

Ω

u∆ϕ = 0,∀ϕ ∈W 2,∞(Ω) ∩W 1,∞
0 (Ω).

Therefore u = 0.
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Continuous dependence in the smooth case
Let u the unique weak solution when f, u0 are smooth. Then

‖u‖L1(Ω) ≤ C(‖fδ‖L1(Ω) + ‖u0‖L1(∂Ω))

Proof.
The idea of the proof is simple.
For γ a nondecreasing function γ(0) = 0, let γ = ∂k, k(0) = 0, κ ≥ 0.
Let ϕ ≥ 0. By considering a intelligent test function ϕγ(u) we obtain

∇u · ∇(ϕγ(u)) = ∇k(u) · ∇ϕ + ϕγ
′
(u)|∇u|2 ≤ ∇k(u) · ∇ϕ.

Hence ∫
Ω
∇k(u)∇ϕ ≤

∫
Ω
fϕγ(u)

Let ϕ ≥ 0 be given by
−∆ϕ = 1,Ω ϕ = 0∂Ω.

Then ∫
∂Ω

k(u0)
∂ϕ

∂n
+

∫
Ω
k(u) (−∆ϕ)︸ ︷︷ ︸

=1

≤
∫
Ω
fδ δ
−1
ϕ︸ ︷︷ ︸

∈L∞
γ(u)

∫
Ω
k(u) ≤ ‖ϕ‖

W1,∞

(∫
∂Ω

k(u0) +

∫
Ω
δ|f ||γ(u)|

)
As γ → sign we have k → | · |.
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Existence I

Theorem
Let fδ ∈ L1(Ω), u0 ∈ L1(∂Ω). Then there exists u ∈ L1(Ω) such that

−
∫

Ω

u∆ϕ =

∫
Ω

fϕ−
∫
∂Ω

u0
∂ϕ

∂n
∀ϕ ∈W 2,∞(Ω) ∩W 1,∞

0 (Ω).

Proof:
Let fn ∈ C(Ω̄) and u0n ∈ C(∂Ω) such that

fnδ → fδ in L1(Ω), u0n → u0 in L1(∂Ω)

Then (un) is a sequence of regular solutions such that

−
∫

Ω

un∆ϕ =

∫
Ω

fnϕ−
∫
∂Ω

u0n
∂ϕ

∂n
∀ϕ ∈W 2,∞(Ω) ∩W 1,∞

0 (Ω).
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Existence II
By linearity un − um is a solution of the problem fn − fm and u0n − u0m

so

‖un − um‖L1(Ω) ≤ C(‖fnδ − fmδ‖L1(Ω) + ‖un0 − um0‖L1(∂Ω))

Since (fn) and (u0n) are Cauchy, so is (un).
Hence, there exists u ∈ L1(Ω) such that

un → u in L1(Ω)

For ϕ ∈W 2,∞ we have ϕ,∆ϕ ∈ L∞(Ω) and ∂ϕ
∂n ∈ L

∞(∂Ω). Therefore

−
∫

Ω

u∆ϕ =

∫
Ω

fϕ−
∫
∂Ω

u0
∂ϕ

∂n
∀ϕ ∈W 2,∞(Ω) ∩W 1,∞

0 (Ω).

By convergence, u also satisfies the continuous dependence equation.
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Uniqueness result. Comparison principle
Other than continuous dependence, the other trick to show uniqueness is the
comparison principle (equivalently maximum principle or monotonicity) for smooth
functions {

−∆u ≤ 0 Ω

u ≤ 0 ∂Ω
=⇒ u ≤ 0 Ω

We can prove the uniqueness:

Proof of the uniqueness via comparison. Smooth case.
Then, the di�erence of two solutions u = u1 − u2 satisfies this

u1 ≤ u2.

Then same holds for u2 − u1, therefore

u2 ≤ u1.
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Uniqueness via comparison principle

For smooth functions {
−∆u ≤ 0 Ω

u ≤ 0 ∂Ω
=⇒ u ≤ 0 Ω

�estion: does this work for very weak solutions?
Answer: YES

Theorem
Let u ∈ L1(Ω) such that

−
∫

Ω

u∆ϕ ≤ 0 ∀0 ≤ ϕ ∈W 2,∞(Ω) ∩W 1,∞
0 (Ω)

Then
u ≤ 0, a.e. Ω
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Uniqueness result. Comparison principle

−
∫

Ω

u∆ϕ ≤ 0 ∀0 ≤ ϕ ∈W 2,∞(Ω) ∩W 1,∞
0 (Ω) =⇒ u ≤ 0, a.e. Ω

Idea of the proof for u ∈ Lp(Ω).
Take

−∆ϕ = sign +(u), Ω ϕ = 0, ∂Ω.

Which is 0 ≤ ϕ ∈W 2,p′(Ω) ∩W 1,p′

0 (Ω).
Take 0 ≤ ϕn ∈W 2,∞(Ω) ∩W 1,∞

0 (Ω) such that ϕn → ϕ in W 2,p′(Ω)
Then ∫

Ω

u+ ≤ 0.

Therefore u+ = 0. Hence u ≤ 0.
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Kato’s inequality for u ∈ L1(Ω)

Definition
Let u, f ∈ L1

loc(Ω). We say that −∆u ≤ f in D′(Ω) if

−
∫

Ω

u∆ϕ ≤
∫

Ω

fϕ ∀0 ≤ ϕ ∈W 2,∞
c (Ω)

Notice that d(suppϕ, ∂Ω) > 0. No information on the boundary conditions.

Theorem (Kato’s inequalitya)
aM. Marcus and L. Véron. Nonlinear Second Order Elliptic Equations Involving

Measures. Vol. 22. De Gruyter, 2013.

Assume that u, f ∈ L1
loc(Ω) and −∆u ≤ f in D′(Ω). Then:

1 −∆|u| ≤ fsignu in D′(Ω).

2 −∆u+ ≤ fsign +u in D′(Ω).
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Theorem (Maximum principle){
−∆u ≤ 0 in D′(Ω)

u ∈W 1,1
0 (Ω)

=⇒ u ≤ 0 (8)

Proof of the uniqueness result using Kato’s inequality for
u ∈ W 1,1

0 .

Let u1, u2 ∈W 1,1
0 (Ω) be two solution. Let u = u1 − u2.

We have that |u| ∈W 1,1
0 (Ω) and −∆|u| ≤ 0 · signu = 0.

Therefore |u| ≤ 0.
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Weights as boundary conditions. Beyond Hardy’s
inequality

Theorem
Hardy inequality Let u ∈W 1,p(Ω), p > 1. Then

u

δ
∈ Lp(Ω) ⇐⇒ u ∈W 1,p

0 (Ω).

Let u ∈W 1,1(Ω). Then

u

δ
∈ L1(Ω) =⇒ u ∈W 1,1

0 (Ω).

However 6⇐= .

QUESTION: Can we use u
δ ∈ L

1(Ω) as boundary condition in L1(Ω)?
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QUESTION: Can u
δ ∈ L

1(Ω) be b.c. in L1(Ω)?
ANSWER: YES

Theorem
Let u and r > 1 be such that −∆u ≤ 0 in D′(Ω),

u

δr
∈ L1(Ω).

Then u ≤ 0.

This guaranties uniqueness. This does not guaranty existence.
However, we will see there are problem in which u

δr
∈ L1(Ω) holds.

Remark
The result holds for r = 1. Work in preparation.

6We write −∆u ≤ f in D′(Ω): −
∫
Ω u∆ϕ ≤

∫
Ω ϕf for all 0 ≤ ϕ ∈W 2,∞

c (Ω).
David Gómez-Castro
(UCM)

Linear di�usion equations with singular absorption potentials and/or unbounded convective flows. 38/93

http://www.mat.ucm.es/imi/dgomezcastro


An auxiliary function

Let ψ ∈ C∞(R) be↗ s.t. ψ(s) =

{
1, s ≥ 1,

0, s ≤ 0.

Define, for x ∈ Ω: ϕε(x) = ψ

(
δ(x)− ε

ε

)
=

{
0 if δ(x) ≤ ε,
1 if δ(x) ≥ 2ε.

Then:

1 suppϕε is compact

2 δϕε → δ in L∞(Ω).

3 In the multiindex notation ‖Dαϕε‖∞ ≤ Cε−|α|

4 For |α| ≥ 1 we have suppDαϕε(x) ⊂ {ε ≤ δ(x) ≤ 2ε}.
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Theorem (Comparison Principle in L1(Ω, δ−r))
Let u and r > 1 be such that −∆u ≤ 0 in D′(Ω) and u

δr
∈ L1(Ω). Then u ≤ 0.

Proof.
Let η ∈W 2,∞(Ω) ∩W 1,∞

0 (Ω). Then ϕεη ∈W 2,∞
c (Ω). We have

δr∆(ηϕε) = δϕε∆η + δr∇ϕε · ∇η + δrη∆ϕε

= δϕε∆η + δr∇ϕε · ∇η +
η

δ
δr+1∆ϕε

→ δr∆η in L∞(Ω).

Then

0 ≥ −
∫

Ω

u∆(ϕεη) =

∫
Ω

u

δr︸︷︷︸
L1

δr∆(ϕεη)︸ ︷︷ ︸
L∞

→ −
∫

Ω

u

δr
δr∆η = −

∫
Ω

u∆η.
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Last comments

Regularity of very weak was studied in:

J. I. Dı́az and J. M. Rakotoson. “On the di�erentiability of very weak
solutions with right hand side data integrable with respect to the distance
to the boundary”. In: Journal of Functional Analysis 257.3 (2009),
pp. 807–831.
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The comfortable se�ing

In the section we aim to work on the following PDE{
−∆u+ V u = f, in Ω

u = 0, on ∂Ω
(9)

when V ∈ L1
loc(Ω). It is well known

f ∈ L2(Ω),
V ∈ L∞(Ω)

}
=⇒ Existence and Uniqueness of u ∈ H1

0 (Ω)

We apply Lax-Milgram to the following problem
Find u ∈ H1

0 (Ω) such that ∀ϕ ∈ H1
0 (Ω)∫

Ω

∇u∇ϕ+

∫
Ω

V uϕ =

∫
Ω

fϕ
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The “easy” cases: V ≤ cδ−2

Due to Hardy’s inequality

uδ−1 ∈ L2(Ω), ∀u ∈ H1
0 (Ω) (10)

Hence

H1
0 (Ω)×H1

0 (Ω) → R (11)

(u, ϕ) 7→
∫

Ω

V uϕ =

∫
Ω

(V δ2)︸ ︷︷ ︸
L∞

(uδ−1)︸ ︷︷ ︸
L2

(ϕδ−1)︸ ︷︷ ︸
L2

(12)

is bilinear continuous. Hence we can apply Lax-Milgram.

It is known7 that V ≤ cδ−α, α ∈ (0, 1)

u ∈W 1,1
0 (Ω), ‖∇u‖

L
N

N−1+α
,∞

(Ω)
≤ ‖f‖L1(Ω,δα) (13)

7J. I. Dı́az and J. M. Rakotoson. “On very weak solutions of Semi-linear elliptic
equations in the framework of weighted spaces with respect to the distance to the
boundary”. In: Discrete and Continuous Dynamical Systems 27.3 (2010),
pp. 1037–1058.
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Let µ(x) be a function. We define

Lp(Ω, µ) =

{
f measurable :

∫
Ω

|f |pµ < +∞
}
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Existence for V ∈ L1
loc

Theorem (Dı́az & Rakotosona)
aJ. I. Dı́az and J. M. Rakotoson. “On very weak solutions of Semi-linear elliptic

equations in the framework of weighted spaces with respect to the distance to the
boundary”. In: Discrete and Continuous Dynamical Systems 27.3 (2010),
pp. 1037–1058.

If V ∈ L1
loc(Ω) and f ∈ L1(Ω, δ) then there exists u ∈ L1(Ω) solution of

V u ∈ L1(Ω, δ), and ∀ϕ ∈W 2,∞
c (Ω),

−
∫

Ω

u∆ϕ+

∫
Ω

V uϕ =

∫
Ω

fϕ,

If V, f ∈ L1(Ω, δ) then there exists u ∈ L1(Ω) solution of
V u ∈ L1(Ω, δ), and ∀ϕ ∈W 2,∞(Ω) ∩W 1,∞

0 (Ω),

−
∫

Ω

u∆ϕ+

∫
Ω

V uϕ =

∫
Ω

fϕ,
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Some remarks

1 Extra regularity is known:

u ∈ LN
′,∞ ∩W 1,q(Ω, δ).

2 Some extra bounds are known for at least one of the solutions:

1 ‖u‖LN′,∞ ≤ ‖fδ‖L1

3 The case V δ ∈ L1(Ω) has uniqueness in a direct way.

4 If V = δ−α then V δ ∈ L1(Ω) ⇐⇒ α < 2.
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Existence for V ∈ L1
loc

The argument is the following. Let Tk(s) =

{
s, |s ≤ k
k sign s, |s| > k.

Vk = Tk(V ), fk = Tk(f).

Let uk be the weak solution of

−∆uk + Vkuk = fk,Ω, uk = 0, ∂Ω

Then, applying continuous dependence:

uk
L1(Ω)−→ u, as k → +∞.

Besides V uδ ∈ L1(Ω). Through a Dunford-Pe�is argument:

1 Vkukδ ⇀ V uδ in L1
loc(Ω).

2 If V δ ∈ L1(Ω) then Vkukδ ⇀ V uδ in L1(Ω)
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Proof of uniqueness for V ∈ L1(Ω, δ)

Step 1. how that ϕ ≥ 0

−
∫

Ω

|u|∆ϕ+

∫
Ω

V |u|ϕ ≤
∫

Ω

fϕ

Proof.
Let

−∆ϕ = 1,Ω ϕ = 0∂Ω.

By considering a intelligent test function ϕγ(un) we obtain∫
Ω

∇k(un)∇ϕ+

∫
Ω

Vkukγ(un) ≤
∫

Ω

fϕγ(un)

−
∫

Ω

k(un)∆ϕ+

∫
Ω

Vnunγ(un) ≤
∫

Ω

fϕγ(un)

We pass to the limit in n. As γ → sign we have k → | · |.
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Uniqueness for V ∈ L1(Ω, δ)

Step 2. Take two solutions u1, u2 and u = u1 − u2.

−
∫

Ω

|u|∆ϕ+

∫
Ω

V |u|ϕ ≤ 0

Step 3. Then we define ϕ1 ∈W 2,∞(Ω) ∩W 1,∞
0 (Ω):

−∆ϕ1 = λ1ϕ1,Ω ϕ1 = 0, ∂Ω.

Hence ∫
Ω

|u| (λ1 + V )ϕ1︸ ︷︷ ︸
>0

≤ 0

Therefore u = 0.
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Uniqueness when V ≥ cδ−r, r > 2 I

Theorem
Let 0 ≤ V ∈ L1

loc(Ω) and u be such that
−
∫

Ω

u∆ϕ+

∫
Ω

V uϕ = 0 ∀ϕ ∈W 2,∞
c (Ω),

V u ∈ L1
loc(Ω),

u

δs
∈ L1(Ω), s > 1.

Then u = 0.

Proof.
We write −∆u = −V u ∈ L1

loc(Ω). By Kato’s inequality

−∆|u| ≤ −V u sign(u) = −V |u| ≤ 0 in D′(Ω).

Since |u| ∈ L1(Ω, δ−s) we have that |u| ≤ 0. Hence u = 0.
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Uniqueness when V ≥ cδ−r, r > 2 II

If V ≥ Cδ−r with C > 0. We have

0 ≤ |u|δ1−r ≤ 1

C
V |u|δ ∈ L1(Ω).

Therefore:

Corollary (a)
aJ. I. Dı́az, D. Gómez-Castro, J. M. Rakotoson, and R. Temam. “Linear di�usion

with singular absorption potential and/or unbounded convective flow: the weighted
space approach”. 2017.

Let Cδ−r ≤ V ∈ L1
loc(Ω), with C > 0, r > 2, and fδ ∈ L1(Ω). Then, there exists a

unique v.w.s.
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Conditions on~b

We will consider the conditions{
div~b = 0 Ω,
~b · ~n = 0 ∂Ω.

(14)

In the following sense:∫
Ω

ϕ(~b · ∇u) = −
∫

Ω

u(~b · ∇ϕ), ∀ϕ ∈W 2,∞(Ω) ∩W 1,∞
0 (Ω).

Remark

For smooth functions div(ϕ~b) = ϕdiv~b+~b · ∇ϕ
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Definition of very weak solution

Definition

Let f be in L1(Ω; δ) and~b ∈ LN,1(Ω)N with div(~b) = 0 in D′(Ω),~b · ~n = 0
on ∂Ω, V measurable and non negative function. A very weak solution u is
a function u ∈ LN ′,∞(Ω) such that

V u ∈ L1(Ω; δ) and
∫

Ω

u
[
−∆φ−~b · ∇φ+ V φ

]
dx =

∫
Ω

fφ dx, (15)

for all φ ∈ C2(Ω) with φ = 0 on ∂Ω, if V ∈ L1(Ω; δ), or for all φ ∈ C2
c (Ω)

if V ∈ L1
loc(Ω).
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From monotonicity methods to the study of dual
solutions

The methods we used in the previous equations are no longer easy.
Nonetheless we write∫

u

u(−∆ψ −~b · ∇ψ + V ψ) =

∫
u

fψ.

Let
L∗ψ = −∆ψ −~b · ∇ψ + V ψ.

When~b = 0 it was easy to find functions ψ very regular such that

L∗ψ = 1 L∗ψ = sign +u.

This kind of arguments is harder now.

To obtain this results this we do regularity escalation in Lorentz spaces.

David Gómez-Castro
(UCM)

Linear di�usion equations with singular absorption potentials and/or unbounded convective flows. 65/93

http://www.mat.ucm.es/imi/dgomezcastro


Outline

4 Very weak solutions −∆u+~b · ∇u+ V u = f

Conditions on~b
Definition of very weak solution
Study of the dual problem
Lorentz spaces
Regularity results for the dual problem
Existence of very weak solutions
A comparison principle with transport
Uniqueness when V ≥ cδ−r, r > 2
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Lorentz spaces

Let f : Ω→ R be measurable.
The distribution function of f : µ(t) = |{x ∈ u : |f(x)| > t}|.
The decreasing rearrangement of f : f∗(s) = sup{t ≥ 0 : µ(t) > s}

Lorentz defined the following spaces89:
Given 0 < p, q ≤ ∞ define

‖f‖(p,q) =


(∫ ∞

0

(
t

1
p f∗(t)

)q dt
t

) 1
q

q < +∞,

sup
t>0

t
1
p f∗(t) q = +∞.

and L(p,q)(Ω) = {f measurable in Ω : ‖f‖(p,q) < +∞}
8G. Lorentz. “Some new functional spaces”. In: Annals of Mathematics 51.2

(1950), pp. 37–55.
9G. Lorentz. “On the theory of spaces Λ”. In: Pacific Journal of Mathematics 1.3

(1951), pp. 411–430.
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An alternative definition of Lorentz spaces
Let 1 6 p 6 +∞, 1 6 q 6 +∞ . Let u ∈ L0(Ω). We define

||u||p,q =


[∫

Ω∗

[
t

1
p |u|∗∗(t)

]q dt
t

] 1
q

q < +∞,

sup
0<t6|Ω|

t
1
p |u|∗∗(t) q = +∞

|u|∗∗(t) =
1

t

∫ t

0
|u|∗(σ)dσ.

We define Lp,q(Ω) = {f measurable in Ω : ‖u‖p,q < +∞}.

Proposition (Corollary 1.4.1 ina)
aJ.-M. Rakotoson. Réarrangement Relatif. Vol. 64. Mathématiques et

Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

Let 1 < p 6 +∞, 1 6 q 6 +∞. Then

Lp,q(Ω) = L(p,q)(Ω)

with equivalent quasi-norms.
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Properties of Lorentz spaces

The functionals ‖ · ‖Lp,q do not, in general, satisfy the triangle inequality.
However, Lp,q is a quasi-Banach space.

The following properties are known10:

1 If 0 < p ≤ ∞ and 0 < q < r ≤ +∞ then L(p,q) ⊂ L(p,r).

2 L(p,p) = Lp for all p ≥ 1.

3 Let 1 ≤ p, q <∞. Then (L(p,q)(Ω))′ = L(p′,q′)(Ω).

4 If q < r < p then L(p,∞)(Ω) ∩ L(q,∞)(Ω) ⊂ Lr(Ω) (even for Ω unbounded)

5 In a bounded domain, if r < p then L(p,∞)(Ω) ⊂ Lr(Ω)

10L. Grafakos. Classical Fourier Analysis. Vol. 249. Graduate Texts in
Mathematics. New York, NY: Springer New York, 2009, pp. 1–1013.
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Lorentz spaces. Inclusion diagram

We can write the diagram of inclusions for 1 ≤ q ≤ r < p < +∞

L(∞,∞) = L∞
cC

qq
L(p,1) �

� //� _

��

L(p,q) �
� //� _

��

L(p,∞) = weak Lp
hH

vv
L(r,1) �

� // L(r,q) �
� // L(r,r) = Lr �

� // L(r,∞).
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Sobolev spaces of Lorentz spaces

We can define the Sobolev spaces associated to this spaces. In general, let
X ⊂ L0. We define the

WmX = {f ∈ X : ∀α such that |α| ≤ m we have Dαf ∈ X} (16)

where Dα is the generalized derivative of order α (in the multiindex
notation).
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The highlights

Remark
In order to read the following slides it is enough to keep in mind the
following

1 ≤ p < q < r =⇒ Lr ⊂ Lq,1 ⊂ Lq ⊂ Lq,∞ ⊂ Lp
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Regularity results for the dual problem

Proposition

Let T ∈ H−1(Ω) (dual ofH1
0(Ω)),~b satisfying (5) and let 0 ≤ V ∈ L0(Ω) .

Define W =
{
ϕ ∈ H1

0 (Ω) : V ϕ2 ∈ L1(Ω)
}
, and let W ′ denotes its dual. Then,

there exists a unique φ ∈ H1
0 (Ω), with V φ2 ∈ L1(Ω), such that

(P)V,T −∆φ−~b · ∇φ+ V φ = T in W ′. (17)

Moreover,

||φ||H1
0 (Ω) ≤ c||T ||H−1(Ω),(∫

Ω

V φ2dx

) 1
2

6 c||T ||H−1(Ω),

If furthermore V ∈ L1
loc(Ω, then the equation (17) holds in the sense of distributions

in D′(Ω)
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Regularity results for the dual problem

Proposition (Approximation by bounded potentials)

Let T ∈ H−1(Ω), ~b and V . Then, the sequence φk ∈ H1
0 (Ω) of solutions of the

problems

(P)Vk,T :

∫
Ω

∇φk·∇ψdx−
∫

Ω

~b∇φkφdx+

∫
Ω

Vkφkψdx = 〈T, ψ〉, ∀ψ ∈ H1
0 (Ω),

converges to φ strongly in H1
0 (Ω), where φ is the unique solution of (P)V,T found in

Proposition 2.

Proposition
Under the same assumptions as for Proposition 2 (with λ = 0), if
T > 0, T ∈ L1(Ω) ∩H−1(Ω) then φ > 0.
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Regularity results for the dual problem

Proposition (L∞-estimates)

Let φ be the solution of (17) when T ∈ L
N
2
,1(Ω), V > 0. Then φ ∈ L∞(Ω) and there exists a

constant KN (Ω) independent of~b and V such that

||φ||L∞(Ω) 6 KN (Ω)||T ||
L
N
2
,1

(Ω)
.

Proposition

Let N > 2, and let φ be a solution of (17) when

T = − div(~F ), ~F ∈ LV =

{
LN,1(Ω)N N > 3,

L2+ε(Ω)2 N = 2.

Then φ ∈ L∞(Ω) and there exists a constant KN (Ω) > 0 independent of~b and V such that

||φ||L∞(Ω) 6 KN (Ω)||~F ||LV .
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Regularity results for the dual problem

Proposition (W 1Lp,q-estimate)
Let N > 2. Assume that there exists p > N and q ∈ [ 1,+∞], such that~b ∈ Lp,q(Ω)N V > 0, V ∈ Lr,q(Ω), r =

Np

N + p
,

T = − div(~F ) with ~F ∈ Lp,q(Ω)N .

Then, the unique solution φ of the equation (17) belongs to W 1Lp,q(Ω). Moreover, there exists a
constant Kpq > 0 independent of~b such that :

||∇φ||Lp,q(Ω) 6 Kpq
(

1 + ||~b||Lp,q + ||V ||Lr,q
)
||F ||Lp,q(Ω)N .

Proposition

Let~b and ~F be in Lp,∞(Ω)N for some p > N . Then, the solution of (17) satisfies

φ ∈ C0,α(Ω) with α = 1−
N

p
.
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Regularity results for the dual problem

Proposition (W 2Lp,q(Ω) regularity for p > N )

Let φ be the solution of (17) when T ∈ Lp,q(Ω), p > N, q ∈ [1,+∞]. Assume,
furthermore, that~b ∈ Lp,q(Ω)N and V ∈ Lp,q(Ω). Then

φ ∈W 2Lp,q(Ω).

Moreover, there exist constants cε0 , KpqN > 0 such that

||φ||W2Lp,q(Ω) 6
KpqNcε0(1 + ||V ||Lp,q + ||~b||Lp,q(Ω))

1−Ks
pqε0||~b||Lp,q(Ω)

||T ||Lp,q(Ω).
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Regularity results for the dual problem
The case where p = N can also be treated in the same way provided that
the norm of~b in LN,1(Ω) is small enough in the sense that

||~b||LN,1(Ω) 6 θKs0
N1 for some θ ∈ [ 0, 1 [, (18)

Ks0
N1 = Ks

N1 sup
φ∈H1

0 (Ω)∩W 2LN,1(Ω)

||∇φ||∞
||φ||W 2LN,1

. (19)

Proposition (regularity in W 2LN,1(Ω))

Let φ be the solution of (17) when T ∈ LN,1(Ω), V ∈ LN,1(Ω). Assume that
~b satisfies relation (18). Then φ ∈W 2LN,1(Ω). Moreover, there exists a
constant K ′N (Ω) (independent of~b) such that

||φ||W 2LN,1(Ω) 6
K ′N (Ω)(1 + ||V ||LN,1)

1−Ks0
N1||~b||LN,1

||T ||LN,1(Ω).
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Regularity results for the dual problem

Here we want only to consider the space Λ = (LN (LogL)
β
N )N for

β > N − 1.
Indeed this space is included in LN,1(Ω) and contains Lp(Ω) for all p > N .

Theorem (regularity in W 2LN(Ω))

Let T and V be in LN (Ω), ~b ∈ Λ, div(~b) = 0 and~b · ~n = 0 on ∂Ω. Then the
unique solution φ of (17) belongs to W 2LN (Ω) and choosing ε > 0 such that

ε||~b||Λ 6
1

2
, there exists a constant Kε > 0 such that

||φ||W 2LN (Ω) 6
Kε(1 + ||~b||Λ + ||V ||LN )

1− ε||~b||Λ
||T ||LN (Ω).
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Outline

4 Very weak solutions −∆u+~b · ∇u+ V u = f

Conditions on~b
Definition of very weak solution
Study of the dual problem
Lorentz spaces
Regularity results for the dual problem
Existence of very weak solutions
A comparison principle with transport
Uniqueness when V ≥ cδ−r, r > 2
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Existence of very weak solutions

Theorem
Let f ∈ L1(Ω; δ).
Let~b be in Lp,1(Ω)N with div(~b) = 0 in D′(Ω),~b · ~n = 0 on ∂Ω.

Furthermore, assume that either p > N or p = N and ||~b||LN,1 < Ks0
N1 (see

(18)).

Then, there exists a very weak solution u of (15).

Furthermore, If V ∈ Lp,1(Ω), then the solution is unique.
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Existence of very weak solutions. Sketch of proof

1 Take f ≥ 0. −∆uj +~bj · ∇uj + Vjuj = fj

2 ‖uj‖LN′,∞ ≤ C‖δfj‖L1(Ω)

1 E measurable. Take −∆φj −~bj · ∇φj = χE .
2
∫
E
ωj ≤ C|E|

1
N ‖fjδ‖L1

3 Hardy Li�lewood inequality.

3 uj ⇀ u in LN
′,∞(Ω). We deduce strong convergence from boundedness in

W 1,q(Ω, δ) for q > 1 small.

4 Check that ‖V ωδ‖ ≤ C(1 + ‖~b‖LN,1)‖fδ‖L1 .

5 ~bjuj → bu in L1(Ω)N , using pointwise convergence and Vitali’s condition.

6 Dunford-Pe�is argument Vjujδ ⇀ V .

7 Pass to the limit in the equation.

8 If V ∈ Lp,1 take φ ∈W 2LN,1 solution of −∆φ−~b · ∇φ+ V φ = sign (u)
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A comparison principle with transport I

Theorem (Comparison principle)

Let u be in L1(Ω; δ−r) ∩W 1,1
loc (Ω), r > 1. Let u ∈ LN ′,∞(Ω) and

~b ∈ Lp,1(Ω) with p > N or p = N with a small norm. Assume that

Lu≡̇ −∆u+ div(~b u) 6 0 in D′(Ω).

and Lu ∈ L1
loc(Ω).

Then
u 6 0 in Ω.
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A comparison principle with transport II

Corollary (Variant of Kato’s inequality)

Let u be in W 1,1
loc (Ω) ∩ LN ′,∞(Ω), u ∈ L1(Ω; δ−r) for r > 1 and

~b ∈ LN,1(Ω)N with div(~b) = 0, ~b · ~n = 0.

Assume furthermore that Lu = −∆u+ div(~bu) is in L1(Ω; δ). Then for all
φ ∈ C2(Ω), φ = 0 on ∂Ω, φ > 0 one has

1

∫
Ω

u+L
∗φdx 6

∫
Ω

φ sign +(u)L(u)dx,

2

∫
Ω

|u|L∗φdx 6
∫

Ω

φ sign (u)L(u)dx,

where L∗φ = −∆φ−~b · ∇φ = −∆φ− div(~bφ).
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Uniqueness when V ≥ cδ−r, r > 2

Theorem

Assume that 0 ≤ V ∈ L1
loc(u), and such that

∃ c > 0, V (x) > cδ(x)−r, in a neighborhood U of the boundary, with r > 2.

Then, the v.w.s. u found is unique.

Sketch of Proof.
We have that

|u|δ1−r ≤ 1

c
V |u|δ ∈ L1(u).

Again take u = u1 − u2 and
L∗|u| ≤ −V |u|

Therefore u = 0.
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David Gómez-Castro
(UCM)

Linear di�usion equations with singular absorption potentials and/or unbounded convective flows. 90/93

http://www.mat.ucm.es/imi/dgomezcastro


References II

J. I. Dı́az and J. M. Rakotoson. “On the di�erentiability of very
weak solutions with right hand side data integrable with
respect to the distance to the boundary”. In: Journal of
Functional Analysis 257.3 (2009), pp. 807–831.

J. I. Dı́az and J. M. Rakotoson. “On very weak solutions of
Semi-linear elliptic equations in the framework of weighted
spaces with respect to the distance to the boundary”. In:
Discrete and Continuous Dynamical Systems 27.3 (2010),
pp. 1037–1058.

L. Grafakos. Classical Fourier Analysis. Vol. 249. Graduate
Texts in Mathematics. New York, NY: Springer New York,
2009, pp. 1–1013.
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M. Marcus and L. Véron. Nonlinear Second Order Elliptic
Equations Involving Measures. Vol. 22. De Gruyter, 2013.
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