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Lithium-ion batteries as a limiting vector

In several applications (electric cars, cell-phone technology, space
exploration...) are limited by the charge density of electric batteries

Up to some minor modifications, the model currently being used is due to
J. Newman in 19722,

However, there are still a vast number of open problems.

2). Newman. Electrochemical systems. New Jersey: Prentice-Hall, 1972.
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The infamous battery-catching-fire problem?

The Samsung battery mystery:

In the case of batteries sourced from
Amperex Technology Limited, some
cells were missing insulation tape, and
some batteries had sharp protrusions in-
side the cell that led to damage to the
separator between the anode and cath-
ode. The batteries also had thin separa-
tors in general, which increased the risks

Figure: Burnt-out of separator damage and short circuit-
Samsung Note 7 ing.

This alerts us of the need to understand in sharp detail battery dynamics. In
particular, possible blow-up phenomena.

wh

*https://www.wired.com/2017/01/
-the-samsung-galaxy-note-7-kept-exploding/
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© Mathematical Modeling
@ Basic electrochemical concepts
@ The Newman model
@ Writing of the model for existence and uniqueness theory
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Basic electrochemical concepts

€

Negative electrode

LYY

Separator Positive electrode

| Discharging

Charging

in Jin4n0)

DC power source

Schematic representation of a battery. On both sides of

the cell the lined region represents the current collectors.

Lithium-ion bat

A typical Li-ion battery
cell has three regions: A
porous negative
electrode, a porous
positive electrode and an
electron-blocking
separator

Furthermore, the cell
contains an electrolyte
containing charge
species that can move all
along the cell.
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Basic electrochemical concepts

— electrode: Intercalated Li compound usually made from Carbon, with Li,Ce
active material. y € [0, 1] is the stoichiometry value

Discharge: Li™ inside of solid Li,Cs particles diffuse to the surface where they
react and transfer from the solid phase into the electrolyte phase. Charge: they
follow the opposite way.

yLit +9e” +6C+— Li,Cs (0<y<1).
+ electrode: Usually a metal oxide or a blend of multiple metal oxides such as
LilfyCOOQ, LilfyFePO4 or LilfyMn204
Discharge: Li™ travel via diffusion and migration through the electrolyte solution
to the positive electrode where they react and insert into solid metal oxide
particles. Charge: they follow the opposite way.

LiCoO3 +— Li;_,CoO02 + yLit +ye™ (0<y < 1),

Total reaction equation:

LiCoOs + 6C «— Li1—yCoOs + Li,Cs (0 <y <1)
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Mathematical model. 1D-model

A 1D electrochemical model is considered: z—direction: = € (0, L).
L = Ly + 6 + Ly being the cell width (m).

Negative Electrode Separator Positive Electrode
Domain Domain Domain
53 =2 ¢ fisen; X
Lithiumin 0~ L L 0*
Electrolyte |- Electrolyte _ |
Phase = S

S S N
Charging

-
S e

re=/l
T

RS N
i
=
Lithium in i
Solid Phase

Solid Particles in
Electrode

(from Chaturvedi et al (2010))

At each z € (0,L1)U(L1+6,L): generic spheric solid particle. Radius R +

ithium-ion batte
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Mathematical model. 1D-model
Unknowns:

» Li concentration co(z,t) (mol / m3) in the electrolyte

» Li concentration cs(z;7,t) (mol / m®) in the generic solid electrode
particle at =

» Electric potential measured by a reference Lithium electrode ¢ (x,t)
(V) in the electrolyte

» Electric potential ¢s(x, t) (V) in the solid electrodes

» Temperature T'(t) (K) of the cell. It is usually considered as spatially
homogeneous, although heat diffusion along the cell can be studied.

Validity of the 1D approximation: the characteristic lenth scale of a typical
Li-ion cell along the X-axis is on the order of 100 um, whereas the
characteristic length scale for the remainder two axes is on the order of
100,000 um or more
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Mathematical model
Based on the works by John Newman and other authors:
Conservation of Li in the electrolyte phase

J— 0 .
€ s O <D apace) _1 t+jL1, in (0, L) x (0,tend),

°ot Oz 7 x F
OcCe Oce
a (O t) 8 (L t) O, v E (O, tend)a
ce(x,0) = ce0(x), =€ (0,L),
Ee,— in (0, Ll)

ce=¢e(2)=} €esep ifx € (L1,L1+3d) volume fraction of the electrolyte
Ee,+ ifx € (L1 + 4, L)

p is the Bruggeman porosity exponent

D, is the electrolyte phase Li diffusion coefficient (m? s™1)

9. is the transference number of Lit relative to the solvent velocity

45 reaction current resulting in production/consumption of Li (A m~?)
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Flux of Lithium ions between phases

For j™ the Butler-Volmer equation is used

jLi :jLi(LL',¢S($,t),(pe($,t),CS(LL';RS,t) ce €, t )
F

asio [exp | =7 ) — exp

y /s RT RT

31 (2, 05 Pos 0, T) = itz € (0, L) U <L1 +5,L),
0ifz € (L1, L1 +4)

3es(x)

as = ag(x) = RO is the specific interfacial area of electrodes (m~1)

id=bo .2 JofE k_(ce)® (Cs,— max — Cs)**(cs)* ifz € (0, L),
07 0BT %) A by (Co) @@ (Coomax — Cs)®2(cs)®  ifx € (L1 +6, L),

is the exchange current density of an electrode reaction (A m~2)
1) is the surface overpotential (V) of an electrode reaction
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The surface overpotential

n=n(z.6x(2, 1), pela.1), exlas Re(a), 1), ol 1), (1)),

¢S A SDE - U(ZE7CS7T)7 Ifl’ 6 (07L1) U (Ll + 6? L))
77(557¢5780e7057T> =
Oifx € (L1, L1+ 9),

U(z,cs, T) is the equilibrium potential (V) at the solid/electrolyte interface (i.e.
OCV). A way of expressing U is

U(z,c,T) =

c oU_ @ .
U_ (cs,_,mx> + 57 (c&_,ma) x(T—Tref) ifz € (0,L1),

U+( 7 )+8U+< 4 )x(TfTref) ifx € (L1 + 0, L).

Cs,+,max oT Cs,+,max
where U_, Uy, aa% 3(9(;_ are functions tipically obtained from fitting

experimental data
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Conservation of Li in the electrode solid phase
Foreachz € (0,L1)U (L1 +4,L):

acs Ds ad < 28CS> — 0, in (O,Rs) X (O, tend)7

at  r2or\| or
Jcs _ Jdes _ Ri(z) s
or (LIZ,O,t) =0, Dy or (myRS7t) - 3Es(£)F] , tE (07tend),

cs(z;m,0) = cs 0(x; 1),

2 [ Ds,— ifze(0,L1), \ . . T
Dy = Ds(x) = { Doy ifz€ (L1464 L) is the solid phase Li diffusion

coefficient (m? s™1)

| _ Es,— if x S (O,Ll), . ) |
es = &s(x) = { Y e i) is the volume fraction of the active

materials in the electrodes
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Conservation of charge in the electrolyte phase
For each t € (0, tend) :

_g p 6@6 _ 40 2RT£ P g _ Li -

e (SCH 5 ) +(1-1t1) 52 (Scfiax In (ce) | =4 in(0,L),
O0pe
Ox

0pe
x

(0’ t) =

(Lvt) =0,

0
k = K (co(,t),T(t)) electrolyte ionic conductivity (S m~1)



http://www.mat.ucm.es/imi/dgomezcastro

MADRID

Conservation of charge in the electrode solid phase

For each t € (0, tend) :

0% s A
_ESUW ==7 In (O,Ll)U(Ll“r(s,L),

—&s(0)o(0) aa‘is (0,t) = —es(L)o (L) %ﬁs (L,t) = %,
Dps 9. a
5, (L1:t) = 5=(L1+6,t) =0,

o = o(x) electrical conductivity in electrodes (S m™')
I = I(t) is the applied current (A);

A (m?) is the cross-sectional area (also the electrode plate area)

% is the applied current density (A m~2);
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Heat transfer equation

dT
MC”E = —hAs(T— Tamb) + G+ G+ ge+ ge, t € (0,tena),

T7(0) = To,

M (kg) is the mass of the battery

Cp () kg™t K1) is the specific heat capacity

h (W m~2 K~1) is the heat transfer coefficient for convection

Ag (m?) is the cell surface area exposed to the convective cooling medium
(typically air)

Tamp is the (ambient) temperature of the cooling medium,
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@ = qr(t) = AfL iYindz is the total reaction heat,
= des Des\ 2
qi(t) = A/ asa< ) dz + A asa( ) dx
Ox L146 ox

Ve 2RT Oln ce Ope
+A/ {ep ( ) +(t3_71) " 5§ﬁ< E e dx

is the ohmic heat due to the current carried in each phase and the limited conductivity of
that phase,

ge = qe(t) = I(t)? = Bt is the ohmic heat generated in the cell due to contact resistance
between current collectors and electrodes, Rt (€2 m?) is the film resistance of the electrodes

Li  9U_ /e (z; Rs,—, 1)
/4 " — TA LiZZ— (T8\ 78,707 ) g
e Qe( ) [/O J oT ( Cs,—,max )
L . ;
Li+46 oT Cs,+,max

is the reversible heat caused by the reaction entropy change.

Mathematical m and for Lithium-ion batteries
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After solving the above model, we can get the state-of-charge

Ll SN — t
SOC(t) = / / 260 44y
—,max

and the cell voltage

V(t) = 6u(L 1)~ 6:(0,0) ~ 1)
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© Mathematical Modeling

@ Writing of the model for existence and uniqueness theory

thium-ion batte
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Complete model with simplified constants

For (z,t) € (0, L) X (0, tenq)

o 15} o :
Ce O (De Ce) _ aele,

ot ox ox
Bce dce
(0 t) = (L, t) =0, t € (0, tend),
ox
ce(w,U) = ce,0(x), z € (0, L),
M

Foreveryxz € (0, L) U (L1 + 8, L) and
(r,t) € (0, Rs(@)) X (0, tend)

dcs Ds 8 (2855)
— — | r =0,

ot r2 or or
dcg A
or (0,t;2) =0,
dcg Li
—Ds (Rs(z), t; @) = as(x)j

ar

cs(r, 052) = ¢s,0(r; ),

We define cg g (x, t) = cs(R, t; )

in,

t € (0, tend),

t € (0, tena),

r € (0, Rs(2)),
@

Foreveryt > 0,in (0, L):

2 (82 b T (w2 (Fpe(ee))) =

ox ox

(©)]
where K = Kk(ce, T'). Forz € (0,L1) U (L + 6, L):

1] ( Bd:S) Li
S e Lt
ox ox

I(t)

S S
“2(Ly,t) = —2 (L1 + 6,t) =0,
a36(1) aw(l )
@

dT
*(t) = —arp(T(t) = Tampb) + Fr, ©

T(0) = To,

thium-ion batte
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A comment on divergence form equation

In [Ramos 2016], instead of equations (1), (3) and (4) the author consider the
equations

dce O (D 5P8‘36> — aej¥, i (0,L) X (0, tena),

Bt~ ar \ bz
L0 (., 0 8 (, 8 )
o (292 ) + anT ot (et (fen(e)) =3, in (0,D)
Ceyo QP - U in(0,L0) U (L1 + 6, L).
axQ b b b

where . > 0 is constant in (0, L1), (L1, L1 4+ 6), (L1 + J, L) and &5 in
(07 L1)7 (Ll + 67 L)

This problem is not in divergence form.

Since the constant only jumps in two points, the problem can be written in three
pieces with a matching boundary conditions, and techniques below apply.
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The geometry

We simplify the domain notation by introducing the following sets:

Js = (0,L1) U (L1 + 6, L) 6)
= J {=} x [0, Ra(2)]. @)
zeJs

In fact, we will consider Ry constant in both (0, L1) and (L1 + 4, L)

0 Ly Li+9¢ L
Js

0 0

Ds

Rs.,+

R, -

Figure: Domains Js (spatial domain of definition of ce, e, ¢s) and D;s (spatial
domain of definition of ¢s). Notice that, since we are using a radial coordinate,
every segment {z} x [0, Rs()] in Ds represents a ball {z} x Bp,(,) in {z} x R
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The flux function. General structure

The analytical expression of 5™ is given as follows, for (ce, cs, e, ¢s, T) € R:

=Li
-Li ZE,Ce,CS,T, T, Ce, Cs; Pe, S)T P € Jéa
]L ($>Ceacs7¢ev¢S7T) = {] ( 17( v ¢ ))

0, otherwise,
3)
n(x>ceycS7§0e7¢S7T) o ¢s — Pe — U(~T7Ceycs>T)7 z € Js, (9)

where U is the open circuit potential and 7 the surface overpotential of the
corresponding electrode reaction.

There is no common agreement on the structural assumptions of U.

Mathematical for Lithium-ion batteries
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The flux function. Butler-Volmer expression

ELi — (2o ce (Cs,max _ cs)‘lah (33, %77) (10)
h(z,n) = d1(x) exp(aan) — d2(x) exp(—aen), %
fee(ce) =Ince, .

Qg € (Oa 1)7 (13)

Qe € (07 1)7 (14)

where §1, d2 are positive and constant in each electrode, ¢s max is a constant that
represents the maximum value of ¢s, aq and a. (dimensionless constants) are
anodic and cathodic coefficients, respectively, for an electrode reaction.

Function U was later proposed in [Ramos and Please 2015] as
U=—a(x)Tncs + B(z)T In(cs,max — ¢s) +y(z)TInce + p(ce,cs,T), (15)

where «, 3, are positive functions in L>°(Js) and p is a smooth bounded
function.


http://www.mat.ucm.es/imi/dgomezcastro

IVERSIDAD

@9 cOMPLUTENS

MADRID

Outline

o Main results

r Lithium-ion batte



http://www.mat.ucm.es/imi/dgomezcastro

&‘Ul\l\tl’SlD\

{9 COMPLUTENSE

MADRID

Outline

© Main results
@ Regularity assumptions of the nonlinear terms and initial data
@ Definition of weak-mild solution
@ Assumptions and results regarding Theorem 1
@ Assumptions and remarks regarding Theorem 2
@ Assumptions and remarks regarding Theorems 3 and 4

thium-ion batte
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Main results |

Our aim in this talk is to present the results and techniques presented in

J. 1. Diaz, D. Gomez-Castro, and A. M. Ramos. “On the well-posedness of a
multiscale mathematical model for Lithium-ion batteries”. In: Advances in
Nonlinear Analysis To appear [2018], pp. 1-28. arXiv: 1802.06353

D stro Mathematical m and for Lithium-ion batteries

(UCM)
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Main results Il

Theorem 1 (Well-posedness with general flux and nature of
the possible blow-up)

Let assumptions 1, 2, 3 and 4 hold. Then, if tcnq is small enough, there exists a
unique weak-mild solution by parts of (1)-(5) (in the sense of Definition 2 and
satisfying Assumption 5).

Moveover, there exists a unique maximal extension defined for ¢ € [0, tena) where
tend is some constant teng < ténd. If tena < ténd then one the following conditions
holds as t " tena:

min ¢cg —+ 0 or max Cs,B — Cs,max OF min c. — 0
Jsx[0,t] J5%[0,t] [0,L]x[0,¢]
or max ce—+oo or min7T —0 or maxT — 4oo. (16)
[0,¢]x[0,L] [0,¢] [0,1]

Mathematical modei for Lithium-ion batteries
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Main results Il

Theorem 2 (Well-posedness for the Butler-Volmer flux and
nature of the possible blow-up)

Let Assumptions 1, 2,4, 6, 7, 8 and 9 hold. Then, if tcna is small enough, there exists
a unique weak-mild solution by parts of (1)-(5) (in the sense of Definition 2 and
satisfying assumption 5). This solution admits a unique maximal extension in time
With tena < 1 4.

Moveover, if tena < tgnd then, as t " tenq either

max |¢ps — @eri| > +00 or min7T —0 or maxT — 4oo. (17)
Js % [0,1] [0,¢] [0,¢]

Furthermore,

0 < ¢s < Cs,max and ce > 0, VO0<t<tend- (18)

Mathematical modei for Lithium-ion batteries
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Main results IV

Theorem 3 (Blow up behaviour when j is bounded with
respect to ¢s — Qe 1)

Let Assumptions 1, 2,4, 6, 7,9 and 10 hold. Then, if tenq is small enough, there
exists a unique weak-mild solution by parts of (1) - (5) (in the sense of Definition 2
and satisfying Assumption 5). This solution admits a unique maximal extension in
time with teng < t1, 4. If tena < t1,4, as t — tend then either

min7T -0 or maxT — +oo. (19)
[0,t] [0,¢]

Finally, by assuming some additional conditions (see Assumptions 10, 11) we will
obtain a bound for the temperature T and prove what can be considered a first
global existence result in the literature for this system:

Mathematical modei for Lithium-ion batteries
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Main results V

Theorem 4 (Global existence in a modified case)

Let assumptions 1, 2, 4, 6, 7,9, 10 and 11 hold. Then, there exists a unique

weak-mild solution by parts of (1) - (5), defined for t € [0, ténd] (in the sense of
Definition 1 and satisfying Assumption 5).

Mathematical for Lithium-ion batteries
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© Main results
@ Regularity assumptions of the nonlinear terms and initial data

thium-ion batte
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Regularity assumptions |

Our most general formulation in this paper concerns the case of considering the following
regularity conditions on the data:

Assumptions 1

Let us take the data:

Ce,0 € 17{1(07 L), Ce,0 > 0,

Cs,0 € C(L)i(;)7 0< Cs,0 < Cs,max

To >0

Ie Cpart([O: telndDy 0< tend Stelnd < +o0,

where Cpart denotes the set of piecewise continuous functions

Cpart([a,b]) ={f : [a,b] > R:Fa=1tg <t <--- <ty = bsuchthat f € C([ti—1,t:])}
(20)
Notice that this implies that the lateral limits f(tj:) exist, but need not coincide.

Mathematical modelling and for Lithium-ion batteries
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Regularity assumptions I

Assumptions 2

De € L*(0, L), k € C%((0,+00)?2),0 € L*®(Js), De > Deo > 0,
K> kKo > 0,0 > a9 >0and f,, €C3((0,+00)).

Mathematical for Lithium-ion batteries
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Regularity assumptions Ill

Let us define the open convex sets where we expect to find the solutions:
X = HY(0,L) x C(J5) X R,
Kx ={(Corc0,5,T) € X 1 ¢e > 0,0 < ¢35 < cymax, T > 0},
Y = L*(0,L) x C(Js) X R,
Z =HY0,L) x C(J5) x H(0, L) x H'(Js) xR,

KZ — {(Ce7cs,B7¢e7¢S7T) cZ: (Ce,Cs,B7T) S KX}’

where H1(a, b) is the usual Sobolev space over the interval (a, b) (see, e.g., [Brézis 2010;
Ramos 2012]). It is important to point out that H'(a,b) < C([a, b]). Finally, we define

L
Xy = {(u,v) € HY(0,L) x H'(Js) : /0 w(z)dz = o} , (21)

the natural space in which we will look for the pair (¢e, ¢s).

Mathematical for Lithium-ion batteries
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Regularity assumptions IV

Instead of narrowly focusing on (10)-(14) we shall state an assumption (sufficient to prove
Theorem 1) satisfied by a broader family of functions:

Assumptions 3

For the flux function we assume:

7€ C2(Js x (0, +00) x (0, cs.max) X (0, +00) x R), 22)
U € C%(Js x (0,400) X (0, cs,max) X (0,+00)), (23)
such that
8jLi
——(z, ce,cs,T,1m) >0, (24)
on

for all (z, ce, s, T,m) € J5 X (0,+00) X (0, cs,max) X (0,4+00) X R.

Mathematical for Lithium-ion batteries
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Regularity assumptions V

Remark 1

In particular, it follows from Assumption 3 (in particular due to (22) and (24) applying the
Mean Value Theorem) that there exists a positive continuous function F! satisfying

(7" (@, cer 0, Ty ) =7 @, o 06, T, 1) ) (0 =) = F™ (@, co, 06, Ty, 1) In — 1%, (25)
forallz € Js,ce > 0,¢s € (0, Cs;max), T’ > 0and n,7 € R.
Finally, on the temperature term F we will require the following:
Assumptions 4

Fr € C'(Kz;R) (in the sense of the Fréchet derivative).

Mathematical modelling and for Lithium-ion batteries
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Let us introduce this kind of solutions in the simplest case: the heat equation. Consider the
problem

?9—1; —Au=f inQx(0,tenq),
w=0 on 90X (0, tend), (20)

714(70) = uo, in Q,

in a bounded, smooth domain Q C RV Let up € L%(2) and f € L2((0, tena) X 2). One
can construct, as an intermediate step, the solution of the following problem

o
a—/:fA’UZO inQX(O;tend)7
v=20 on BQX(O, tend)y @

U(-,O) = uo, in £,

by considering the decomposition of L2(Q) in terms of eigenfunctions of —A.

Mathematical for Lithium-ion batteries
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Let us write the unique solution of (27) as v(t) = S(¢)uo. The operator S(t) is a semigroup
(see [Brézis 2010]), and has some interesting properties we will not discuss. A solution u of
problem the non homogeneous problem (26) can be written, for every ¢ € [0, tond], as

u(t) = S(t)uo + /Ot St —s)f(s)ds. (28)

This kind of solution is known as a “mild solution”. As in [Diaz and Vrabie 1989], one can
define the “Green operator” for problem (26) as the function

Giona + = S(Juo + /0 S~ )f(s) ds. (29)

Mathematical m and for Lithium-ion batteries
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In our problem we will need to work with a suitable Green operator associated to
each of the equations. Assuming Assumptions 2, we will define several Green

operators.
For any to > 0 we define (see [Friedman 1964]):

Geoto : L*((0,L)x(0,t0))  —  C([0,t0; H'(0, L)),
f =V

as the solution of the problem

ov 0 0

o or (Per¥) =4 w0 CODx0m)
ov oV

T (0,t) = s (L,t) =0, te(0,to),

V(z,0) = ce,o0(z), z € (0,L).
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For system (2) we will need to do some extra work due to the fact that the equation
is only “pseudo 2D”. First we define the solution of problem (2) for every z fixed

Ge. oty + C([0, R]) x C([0,t0])  —  C([0, R]x[0,0]),
(u07g) =V

by solving the corresponding problem

ov. 1 0 P

o Zor (Dsr V) =0, (y,t) € (0,R) x (0,%0),
ov

_DSW(R7 t) =9 te (Oa t0)7

V(T7 0) = UO(T)7 re (0, R)
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The next step is to consider the dependence on x. Therefore we construct the
Green operator associated to problem (2) collecting all x € Js:

Geato : C(Js X [0,t0]) — C(Ds x [0,0]),
g — W,

given by

W(T, z, t) = Gcs,Rs(x),to (6570(933 ')a g(xa '))(ra t)'
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Finally, we consider the Green operator for the system (5) as the function

GT,to:C([07t0];Z) = C([Oato])v
(ce,CS,B7SDey¢S7T) — W

defined as
W(t) =T +/0 (—QT(T(S) - Tamb)

+ /0 FT(Ce<'7 3)7 CS»B<'7 5)7 ‘pe('v S)a ¢S('7 3)7 T(S))) ds.

This operator is well-defined and of class C' due to Assumption 4.
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It will be useful to introduce the following Nemistkij operators:

NjLi Kz — C([07L1])QC([L1,L1 +5])ﬂC([L1 +(57LD
(C€>CS,B>§097¢S>T) = jLio(ce7cs,B7§0ev¢S7T)

NjLi,to : C([O,to];Kz) Y C([O7 to];C([O,Ll]) mc([LlaLl + 6}) mC([Ll + 9, L]))
(C€>CS,B>§0€7¢S>T) = jLi o (Cevcs,Bv(P%(z)SvT)'

It is well known (see, e.g., [Henry 1981]) that these operators are locally Lipschitz
continuous and C* (in the sense of the Fréchet derivative), properties that will be
used in the proof of Theorem 1, due to the regularity of the elements of the
composition (i.e. (22) and (23)).
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Definition 1 (Weak-mild solution)

We define a “weak-mild solution of (1)-(5)” as a quintuplet (ce, cs, Pe, ¢s, T') € C([0, tenq); K z) such that there
exists 0 < tepg < telznd for which:

o (pe, ¢s) is a weak solutions of system (3)-(4) for the functions ce, cs, T given in the quintuplet, in the sense
that, for every ¢ € [0, tenq) the weak formulations

L g d ; z @ e
/ K 72 e dz — / lewe dae = / Ko T — (fpe (ce»ﬁ dz, Ve € Hl(O, L)
0 Oz dzx Js 0 oz <k
(30)

/Jao 5 o dIJr/JaJ Vede = —2(6a(0) = ¥a(D)), Vs € H'(J5) (31

e (ce, ¢s, T') is a mild solutions of the system (1), (2), (5) for the functions ¢e, ¢ given in the quintuplet, in the
sense that for every tg < tenq:

(cercs, T) = (Gce,to (aeNjLi’tO) y Ges,tg (aijLiﬁtO) VGT,tO)

o (celt<tgs sl R=Rg(z),t<tqr Pelt<tor Pslt<tq, Tlt<tq)- (32)
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Definition 2 (Piecewise weak-mild solution)

We define a “piecewise weak-mild solution” as a quintuplet (ce, s, e, ¢s, T') such
that there exists a partition {to, - - ,tn} of [0, tend] such that in [t;, ti41]

(Ce, Csy e, s, T') is a weak-mild solution in the previous sense, with (ce, cs, T')(;)
as initial condition in the interval [t;, ti41].

Remark 2

It is well known that for problems of type (26), any piecewise weak-mild solution is
a weak solution.

Mathematical mod for Lithium-ion batteries
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Definition 3

Given a solution (in any of the previous senses) (Cey Csy e, s, T) € C([0,a), Kz),
we say that (¢, é, @e, ¢s, T') € C([0,b), Kz) is an “extension” of
(Cey Cs, pe, ¢s, T') if it is also a solution (in the same sense), b > a and

(C;, Cs, Pe, qgsa T)ltSa = (067 Cs, Pes Ps, T)

We say that the extension is “proper” if b > a. We say that an extension is
“maximal” if it does not admit a proper extension.

Mathematical mod
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Notice that the contribution of ¢s can be studied, basically, as a 1D behaviour on
Js.

Geypoto : C(Js x [0,t0])  —  C(Js x [0,t0]),
|_>

)
g W,
where

W('T7 t) N (Gcsio (g))(RS(x)v €z, t)'

In this sense we can rewrite (32) in terms of the restriction ¢s B, instead of cs, as
follows:

Proposition 1

In Definitions 2 and 3, condition (32) is equivalent to the following property:
(CesCs,B,T) € C([0, tena); X) such that

(ceycs,8,T) = (GCe,to (OﬁeNjLi‘tO) y Geg mito (OéijLiytO) ,GT,tO)

0 (Celt<tys Cs,Ble<to, Pelt<to, Pslt<to, Tlt<to)- (33)
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The idea of the proof of Theorem 1 is the following:

@ we will show (see Proposition 2) that we can solve (3) and (4) to
obtain (e, ¢s) if ¢s, co, T are given, extending to the nonlinear case
the study for the linearized equation proved in [Ramos 2016]

© we will apply a fixed point argument to the evolution problems (1),
(2) and (5) to obtain the conclusion.
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It was first shown in [Ramos 2016] that the uniqueness of solutions (e, ¢s) of
system (3)-(4) holds up to a constant relating the difference between ¢, and ¢s. To
avoid this we set the following assumption:

Assumptions 5
We define

Pe,Li = Po — A, T fo,(Ce), (34)
and assume that

L
/ Yori dz = 0. (35)
0

This can be done because (@e, ¢s) is defined up to a constant.

Mathematical mod
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Remark 3

We recall that H'(a,b) C C([a, b]). Thus, since 0 < cc € H'(a, b) then,
ming, ) ce > 0,50 fy,(ce) € H'(0, L).

Remark 4

Another alternative to get the uniqueness of solution is to use the condition
@s|z=0 = 0, instead of (35), setting the value 0 of the potential in one of the walls.

Mathematical for Lithium-ion batteries
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Proposition 2

Let (ce,cs,8,T) € Kx, I € R and let Assumptions 2, 3 hold. Then there exists

e € H' (0, L) and ¢ps € H'(Js) satisfying the elliptic equations (3) and (4) in the
weak sense (30) and (31). Furthermore, given two solutions (pe, ¢s), (fe, ds) there
exists a constant C' € R such that

@e_@:(z’s_(;szc-

Hence we have uniqueness up to a constant. In particular, there exists a unique
solution (e, ¢s) satisfying Assumption 5.

Mathematical mod
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The problem for ¢, and ¢4 IV

Due to this proposition we know that the following functions are well defined:

Gy: Kx xR — H'0,L)x H"(Js)

(Ce7CS,B7T7 I) — (9067 ¢S)7 (36)
ég{) H Kx xR — Kgz
(Cech,ByTv I) T4 (ce7CS,B7G¢(C€7CS,B7Ta I)7T)a (37)

where (e, ¢s) € H'(0,L) x H'(Js) is the (unique) solution of (30)-(31)
satisfying (35). Assuming now that I is a continuous function, i.e. I € C([0,t..4]),
we define the Green operator, for to < t1,4:

Gouo : C([0,t0); Kx) — C([0,t0]; Kz)
(087 CS,B7T) = W

where

W (t) = Go(ce(t), e n(t), T(2), 1(1))-
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Proposition 3

Let Assumptions 2, 3 hold. Then, the operator é¢ Kx xR = Kz isC*t (in the
sense of the Fréchet derivative).

Remark 5

Since we will allow for charge and discharge cycles, we allow for I to be piecewise
continuous, and this is why we define the piecewise weak-mild solution (see
Definition 2).

The proof of the local existence of solutions will be based on finding a unique fixed
point, in C([0, to]; Kx) for to small enough, of the operator problem

(Cc, Cs,B, T) = (Gce»to (OZaNjLi’tO) 7GUs,th0 (OZSNjLi’tO) 5 GT,t()) o é¢,t0 (CC, Cs,B, T)

Mathematical mod for Lithium-ion batteries
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In Theorem 1 one of the reasons of a finite existence time could be that ¢, g — 0, ¢s,max or
ce — 0. This conditions do not, a priori, pose a relevant physical problem since the battery
may very well be completely full or empty.

Assumptions 6

There exists a constant x1 such that k(ce, T') < k1 and f, (-) = In(-).

Assumptions 7

Cs,max < 1 in the units considered to solve the problem.

This is purely technical, but it seems reasonable since, in empirical cases in the literature,
typically ¢s,max ~ 1072 mol cm™3. In particular, in [Smith and Wang 2006] the authors
take cs,max = 1.6 X 10~2 mol cm—3.

Mathematical modelling and for Lithium-ion batteries
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Assumptions 8

]L (17 Ce,Cs,T,m) = Caac (Cs max — Cs)ﬂah( %) )

)=
h(z,s) = h4(z,s) — h_(z, s),
hy(z,s) = 61(z) exp(11s),
h_(z,s) = 02(x) eXP( ¥25),
T) =

n(xvcmcs’ﬁaeyd)sy s — U(CE,CE,CS,T).

where aa, as, Ba € (0,1), 71,72 > 0and §1(x), d2(x) > 0 are constant in each electrode.
Furthermore, we consider U slightly more general than (15):

U(a:, Ce, Cs, T) = _)\min(xa T) Incs + Amax(xa T) 1n(Cs,max — Cs)
+ p(z, T)Ince + p(ce, cs, T), (38)

where Amin; Amax, (¢ are given smooth nonnegative scalar functions and p is a continuous
bounded function.

Mathematical modei for Lithium-ion batteries
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U M 1

3

Figure: Possible representation of U
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Remark 6
Under these assumptions we have
. o=@ e+u(wﬁT) . Amin (z,T) Amax (2,T)
jil =1 (x)ce 1( ’ T )C(sl m T (Cs,max — 05)53771 T
71 —71
x oxp (B0 = por)) exp ( aeercen)) )
i aata (ape+ 42 (o Amin(@.T) Amax (@.T)
7o = b1(x)ee (e B )c: VT (o, max — )Rt TS
—72 2
X exp (T(% - SOe,Li)) exp <?p(ce, Cs’T)) ) (40)

Mathematical m and for Lithium-ion batteries
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Assumptions 9

ForallT > 0and z € [0, L]

. (a% po:T) o (a1)

e
27 T)
aa + 72 | ap. + T >1 (42)
T
e 4y 2min@ 1) oy 43)
T
fo+ pp2mex@T) 5 (44)

T

Mathematical mod
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We strive to make some small modifications to the problem so that we can show that the
charge potentials do not blow up in finite time.

thium-ion batte
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Assumptions 10

Let ELi(a:, Ce, Cs, T, n(x, Ce, Cs, e, bs, T)) = jljr‘ _ f:‘ where
jIjri _ C:rn (a%JrM?T))css-‘—ﬂ%w (Coma cs)Ba—wAm"“‘f(”’T)
x H (ﬂ(ﬁ"s = %,Li)) exp (ip(ce, Cs, T)> , (5)
T T
S G e
x H (_Tw(fi)s = %,Li)) exp (l;p(ce,cs,T)) , (46)

and H is a bounded smooth cut-off function of the exponential:

_ exp(s), s < Soo,
H(s) = {C(s)7 o> s, (47)

where s is an arbitrarily large but fixed cut-off value, and  is such that ¢’ > 0.
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Due to the the delicate interconnectedness of the different terms in F'p it is too difficult to
prove a global existence theorem.

Nonetheless, since many authors consider that the temperature is constant in the cell (see
[Chaturvedi et al. 2010; Farrell and Please 2005; Ranom 2014]), we will allow ourselves a
substantial simplification on the structural assumption for Fr, in order to obtain the global
uniqueness result avoiding the appearance of possible blow-up phenomena.

Assumptions 11
Assume that Fp is linear in T'
Fr = BT(Ce7Cs,<Pea¢s) +TAT(Cestv<Pev¢s)7 (48)

and consider the that By is a nonnegative bounded function By € [O,ET] and that Ap is
bounded A € [A}, Ar], where B, Ap, By € R are constant numbers.

Mathematical mo
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Let us define, for a given (ce, cs,B,T) € K x, the following function:
n0(z) = —ap T fp. (ce(x)) — Uz, ce(x), cs B(x), T), Va € Js,

which corresponds to 1|g, —, 1, =0- Since (ce, cs,B, T') is known we can define, for
z €[0,L] and ® € R,

e oy = [T @ ce@) con@), T, @ +mo@) o€ Js, |
47 0 x € (L1,L1+459).
Notice that
iLi(Iy ¢s($) r— (Pe,Li(x)) = jLi(xa Ce(I), CS,B(I)’ (PE(x)v ¢S(I)7 T) (50)

We also define

36 () = j¥(2,0) (51)

Mathematical for Lithium-ion batteries
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which corresponds to jLi|¢s_ch Li=0-

Remark 7
Given (ce, cs,B,T) € K, due to (22) and (23) we have j§* € L>(0, L) N C(Js).

Mathematical mod
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We rewrite (30)-(31) in terms of @, 1, defining &(x) = k(ce(x),T) € C([0, L]), as

L O . )
/ R@ de -’ / le¢e dz =0,
0 Js

oxr dx

6¢s dips .Li _ 71 N
/Js"am - dm+/Jé] bodo = =2 (L)~ $s0)),  V(e, i) € Xo.

Adding both equations we obtain that (30)-(31) is equivalent to

L Ope,Li dipe Ops dips Li _ I
A“T%*Md”Jfavmi”ﬁf(%”“““?%@‘%@)
(52)

V(the, 1Ps) € X 4. Let us define, forz € [0, L] and @ € R,

(e, @) = M (x, ) — j (). (53)

Notice that j/ii(:r,O) =0.

Mathematical mod
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We can rewrite (52) as

d d L — Pe,Li - d.
Or dz vt Js Oz dw V7 i Jsj (z, &5 — Pe,1i) (s — the) da

/L _ Ove,Li dybe O¢s dips T
R— g
0

= WD)~ yu(0)) /J @ - v

Let us define the operator A1 : X¢ — X; by

(A1(pe,Lis Ps); (e, ¥s)) = / T (x, ¢s — ¥e,Li)(Ps — Ye) d,

Js

for all (pe,Lis @s), (Ye, 1¥s) € Xo. Since H(Js) C C(J5) and

(Pe,Lis Ps) € Xy — jLi(z, s — pe,1i) € C(Js) is bounded and continuous (due to (22)
and (23)) we have that A1 : Xy — Xd*> is bounded continuous.

Mathematical mod
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Furthermore, applying (50), (53) and Remark 1 (due to Assumption 3), we can show that Ay is
a monotone operator since, for all (e Li, @s), (Po.Li, Ps) € Xy we have that

(Al(ﬂoe Li, §s) — AI(SZ;\ITiy Qgs) (‘Pe Li, $s) — ((;;\Ijh $S)>
= / Ll(z s — Pe, Ll) b ]Ll(x ¢S Pe Ll)) (¢S — Pe,Li — (¢ Pe, Ll)) dz

- / (37 @ s — 1) — (@ 8 — Eom)) (66 — Pei — (J — For)) da
= [ (3 @cercoms b= pani ) =5 s, T~ @i+ )
(¢s boLi = (§s — Pori) ) da
= [ PU ) ) 70w, 1) (60 = s = o = o)) o

D stro Mathematical m and for Lithium-ion batteries
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for all (@e,1i, Ps), (e, s) € Xy, due to (25) (which is true due to Assumption 3), where
77(1) = ¢S(x) = We,Li(x) - O‘APengoe (Ce) = U(z7 Ce, CS,T),
(@) = ¢s(@) — Pori(@) — ap Tfe(ce) = U, ce, s, T).

Therefore, for all (v, ¥s) € X4,

~ A\ ~ N2
<A1 (¢57 LPe,Li)_Al (¢Sa SDe,Li)y (¢Sa Hoe,Li)_((bS: Soe,Li» >C ; (¢S — Pe,Li — (¢s - @e,Li))
S
(54)

where

cC=C (ce,cs,T, ¢s — Ve, Li> (df;s — QZ;}:)) = min FLi(z,ce(m),cs(x),T,n(x),ﬁ(a:)) > 0.
reJg Js

Mathematical mod
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Let the operator A : Xy — X7 be defined by:

L .
pOoeti We gy [ 000 Qe gl (4 (b ). (st
oz dz J; Or dz
(55)
Then A is a bounded, continuous, monotone operator. Moreover, it is coercive due to the
Poincaré-Wirtinger inequality [|¢e,Lill 2(0,1) < CllVe,Lill 2 (0,1) and (54). Hence, there
exists a unique solution of the system (3)-(4), due to the Minty-Browder theorem. O

(A(e, go.11), (s, ) = /0

Remark 8

Of course if (e, ¢ps) is a solution of the system (3)-(4) and C'is a constant then
(e + C, ¢s + C) is also a solution. However, there exists only one solution in X 4.

Mathematical m and for Lithium-ion batteries
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Remark 9

The main part of the proof above was to apply the monotonicity of 1 with respect to
@s — @e,Li- The idea behind this monotonicity method has to do with the convexity of the

associated energy functional.

We have so far proved that the map G given by (36) is well-defined. We prove now, applying
the Implicit Function Theorem, that this map is C'.

Mathematical m and for Lithium-ion batteries
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Proof of Proposition 3 1

We will apply the implicit function theorem for the Banach space-valued mapping
F: X xY — Z, tosolve for an operator G¢ : U CX — Y in an expression of the

form N
F(Z,Gs(z)) =0, forallz € U. (56)
The choice of functional spaces will be
X =Cono([0,L]) xRx Kx, Y =X,  Z=X}, (57)
with
Csro([0,L]) = {Rk € C(|0,L]) : & > Ko}, forsome ko > 0. (58)

We will then check that

G¢'(CE’ cSvaT? I) = éd’(ﬁ(CevT)? [7 Ce, Cs,B, T) + (aHPeTf(Pc (Ce)7 0)7 (59)
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due to the definition of @e 1.i (see (34)). Notice that X isan open set of a Banach
space, and therefore we can consider the Implicit Function Theorem (see, e.g.,
[Lang 2012]) in this setting. We will use the notation

= (I%,I,Ce,CS,B,T)G )?7 g: ((Pe,Li,Qi)s) = (U,'U)G i;

Mathematical for Lithium-ion batteries
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We consider the maps A1, Az, Az, As : XxY — 2, given by

@D W) = @) = [ R ()i (o) ds

A2(Z,9) (e, ) = A2(v)(¥s) = [ o(x)v'(x)i(x) dz

Mo (2,2(x)) = —ap. T foo (ce(@)) = Ulx, co(@), cs,8(), T)
)

<,y><¢e,¢5)=/*‘< B(), v(z) — ulz) + 7o (2, 5(2))) - (ts(z) — e()) da

Js5

—

As(@)(er ) = As(D)(¥) = S (B(L) = 6(0))
F=A+ -+ A,

Our definition of weak solution is precisely

F(z,9) = 03. (60)
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The function A4 is linear and continuous, therefore C°°. It is automatic to see that
DgA4 = 0.

On the other hand, A1, A2 are nlultilinear and continuous, and therefore of class
C*. In particular, for § = (u,v),y = (4,7) € X we have

—~Li
Since ag—n is of class C* (see (22) in Assumption 3), then Aj is also of class C'* and

Do) As(Z, u, v) (@, 0) (e, s) = /J 9(0 — @) (s — o) da.

where, for z € Js,



http://www.mat.ucm.es/imi/dgomezcastro

UNIVERSIDAD

%) COMPLUTENSE

MADRID
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Let z° = (Ryce,cs,8,T) € )2', and let §° = (uo,vo) :ﬁoe,m,@) € Xy be the
solution found in Proposition 2. Then g(z) > 0is in C(Js). Therefore, there exists
a constant go such that g(z) > go > 0in Js. Then

D(u,v)F(i’\o,i/\O) 2 (ﬂ,ﬁ) c X¢ — X;

understood as a bilinear form

G((a), (o)) = | o [ it [ oo -

is continuous and coercive in Xg X Xg. Therefore, by Lax-Milgram’s theorem

D(u,0yF(z°,9°) is bijective. Then, by the Implicit Function Theorem applied to F,

there exists a unique C'* function G¢ U — Xy, defined in a neighbourhood U of
zZ%in X, such that (56) holds.
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Since (ce, T) € H'(0, L) x R+ k(ce, T) € C([0, L)) is also C* (the function & is
of class C? due to Assumptions 2) we have that the map

(corcam, T, I) € Kx xR L5 (k(ce,T), I, co,com,T) € X

is C. Let us choose a point (c2, cg’B, T° 1% € Kx x R, and let

Zo = (k(c2,T°),1°, 8, cg7B,T0) € X. Let U C X be a suitable neighbourhood of
Zo so that CAT'd) : U — Xy is defined satisfying (56). Taking the neighbourhood of
(2, ¢, T°, 1°) givenby V = J ' (U) C Kx x R, the composition

G
(Cech,B7T7I) 6 V 'i> (H(687T)717 Ce,Cs7B,T) e U'—¢>(¢97Li7¢5) E X¢

is C'. We finally consider the following translation (which is also of class C*)

T:VxXy — HY(0,L)x H(J5)
(CC7CS,B7T7 I7 Soe,Liv ¢S) — (SDC7 ¢S) = (Sae,Li + aLPeT-ﬁPe (CC)7 ¢S)
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Due to the uniqueness (up to a constant) result we proved in Proposition 2,
T0(Id,GsoJ):V CKx xR —s HY(0,L)x H'(Js)

is the map G4 |v (as constructed in (36) through Proposition 2). Thus, G is of
class C* in a neighbourhood of (c2, CS’B, TP, I°). Since this argument holds over
any point (cg, cg,B, 704 IO) € Kx x R, we have shown that G is of class C! over

Kx x R. This implies that é¢ is also C* and it concludes the proof. O

Lemma 4.1

Let I € C([0, to]) then Gy.1 : C([0,to], Kx) — C([0, to], Kz) is locally Lipschitz
continuous. If I € Cpart ([0, to]) then Go.i : C([0,t0], Kx) — Cpart ([0, to], Kz) is
locally Lipschitz continuous.
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The regularity of G, ¢ is a well-known property:
Geerto + L2((0,%0) x (0,L)) — C([0,0]; H'(0, L)).

This operator has a nice representation formula
t
(Geoto£)(t) = Seco+ [ S(t=)f(s)ds,
0

where S(t)ug is the solution of

ou 0 Oce
M _ 2 (p.Se) =0, (0,1)xE,
ot Oz ( w) 0, (0,L)x

du
ox

Mathematical for Lithium-ion batteries
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Green operators G_; and G+ Il

A number of properties can be easily derived from this expression. For instance, the
continuous dependence with respect to the data:

Gee,tof — Geestodlle(o,to); a1 0,L)) < PRI — 9llL2(0,t0;H1(0,1))>
where p is and increasing, continuous function such that p(0) = 0.
The term GCS .t is a little trickier. First we recall (see [Arendt, Batty, and Neubrander 2013;
Nittka 2014]) that, for any q > 2:
Geg Rty - C((0,R)) x L(0,t0) — C([0, to] x [0, R]),
and
|G e, Roto (w05 Gl Loe (0,60:250 (BR)) < Clllwollzoe(Br) + 19llLa(o,t0))-

Therefore, due to the linearity of the equation, for z, y in the same connected component of
Js, we have that:

1Geq, R to (w05 9) =Gy, R,to (V0, R)|| Loo (0,15 100 (BR)) < Cllluo—vollpoo (Bg)+lg—RllLaco,m))-

Mathematical m for Lithium-ion batteries
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Green operators G, ; and G, ¢ Il

This solves the problem of continuity of G, g with respect to z via the continuous
dependence of the operator. Since cs g is continuous, working in each component we can
prove directly that

Geypoto  C(J55 L9(0,0)) — C(Js x [0, t0]),
is Lipschitz continuous. Furthermore it is easy to check that
Gegpito * C(Js x [0,t0]) — C(J5 x [0,t0]).

We also have the following time estimate, for tg > 0,

1
IGeq 5,tog — Geg mito Pl oo (0,10 x 75) < Ctg lg — Rllzoo((0,t0) x J5) -

By defining the vectorial Green operator for the evolutionary part

Gt = (Geo,tGeg,t, Grye) - C([0,8];Y) — C([0, t]; X),

Mathematical m and for Lithium-ion batteries
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Green operators G._; and G, IV

due to the previous results, we have

Gty — GeFlleo,g;x) < POy — Illeo,4:v) (61)

where p is a continuous function such that p(0) = 0.
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Proof of Theorem 1|

First, let us assume that I is continuous. Let us define the function

f(ce,Cs,By e, s, T) = (ae(x)NjLa (Ce, Cs,B, e, s, T'),
g, Njui(Ce, Cs,8, Pe, ¢s, T),
— hA (T — Tampb) + FT)-
It is clear that f : Kx — Y is locally Lipschitz continuous (due to the definition
and regularity of V;Li and Fr). Let us define, for any ¢ > 0,
fi: C([0,1]; Kx) — C([0,t; Y),

by fi(x)(s) = f(x(s)) for s € [0, t]. This operator is also locally Lipschitz
continuous. Let x = (ce, ¢s,B,T'). Then we can rewrite the fixed point problem (33)
(which was our definition of weak-mild solution of (1)-(5)) as

x =Gy of; 0 Gy.i(x). (62)
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Since f; 0 Gy¢ : C([0, 0], Kx) — C([0, 0], Y) is locally Lipschitz continuous (due
to Lemma 4.1), we can set a bounded neighbourhood U C Kx around
x(0) = (ce(0),¢s,8(0),T(0)) € Kx, and a bounded set V C Y, such that the
composition _

fi 0 Go,to 1 C([0,t0], U) — C([0, t0], V)

is globally Lipschitz continuous. Due to the continuity of G¢ and the fact that
Go = x(0) € Kx, there exists t; > 0 such that

th : C([07 tl]a V) W C([Ov t1]7 U)
Therefore, due to (61), we obtain that, for t2 = min{to, ¢1} > 0 we have that
Gy, ofi 0 Gy, : C([0,t2], U) — C([0, t2], U)

is a contracting map.

Then, we can apply the Banach fixed point theorem to find a unique solution of
problem (62). If I is Cpart then one can simply paste the mild solutions from the



http://www.mat.ucm.es/imi/dgomezcastro

@9

&‘Ul\l\tl’sl[l

COMPLUTENSE

MADRID

Proof of Theorem 1 |11

D
(UcM)

different time partitions. In this sense there exists a unique “piecewise weak-mild
solution”.

Applying classical results, there exists a maximal existence time tenq < t1,4. If
tend < ting then d(x(t),0Kx) — 0or ||x(t)||x — 400 as t — tena. This is
equivalent to (16) and the proof is complete. O

Mathematical m and for Lithium-ion batteries
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Proof of Theorem 2 |

There are a number of papers studying the semilinear equation uy — Au = f(u) with Robin
type boundary conditions, and its eventual possible blow up, depending on the growth of f.
Some of the most classical results are due to Amann [Amann 1987] (for some more recent
works, see e.g., [Pao 2012]).

Let us assume that the solution (ce, cs,B, e, s, T') is defined in [0, to), where
0<ty < tend’ and assume that (17) does not hold as ¢ * tg. We will show that (16) does
not hold, and therefore t.,,q > to. We can think of the problem written in the following way

(1) (1)
9 9 9 aatvz | ape+ s aa—71 | ap.+557
acf‘a(Deace)ﬂ“Cwe (= T>:cgce (= T>zo,

where C and C4q are functions which we will show can be estimated.

Lithium-ion batt
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We can define

w4 p(z, T(t)))
= 10,0110 0] (a% < T(t) ’
] #(%T(t)))
P — ]} 21
E[Mﬁ%w@%+ R e "

min[oyto] T(t)

s

= +
1 = max (51 +52) (?gaﬁae) exp <M(¢s — gellzo + puLoo)) :

Notice that, since ¢s,max < 1, we can conclude that 0 < C'1,C2 < Ci. Finally, we can
define some increasing continuous functions 1, B2 such that 31(0) = 82(0) = 0, with 32
Lipschitz continuous and

max{s¥ "L ¥ TTIHL < B1(s) < 1+ s,

Ba(s) > max{sozaJr"fzﬁ7 Sﬂfa+’Y2ﬁ}7

D stro Mathematical m and for Lithium-ion batteries
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so that we can construct the supersolution Ce and subsolution ce defined as solutions,
respectively, of

et & (Deaa)=5ﬁ1(@) (2,£) € (0,L) X (0, tana),

ot ox ox

2e(0) = ce0 t=0,

(971@: 0 S {07 L}’

Oce I5) Oce Al

~F =~z e e) = ,t 7L s tend)s
(D) + 0B =0 (@1) € 0.0 X (0 tena)
ce(0) = ce,0 t=0,

Once =0 xz € {0,L}.

Using the conditions on the exponents given by Assumptions 9, we deduce that g, ce are
continuous, globally defined in time and

min ce >0 max Ce < +00.
[0,L]x[0,t0] — [0,L]x[0,t0]

Mathematical m and for Lithium-ion batteries 104/116
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Proof of Theorem 2 IV

We also have that

oc Ds 0 e,

ats — T;E (7‘2 8:) =0, (:L’, T,t) € Dg x (O,to),
0 A Amin (2, T) .

BC: +0Cs C? 7 T = aesjEl >0, r= Rs(x),

Cs = Cs,0 t=0,

Lithium-ion batt
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where C3 is a suitable function, such that if we define

Amin (2, T'(t))

Amin N min ’
[0,L]x[0,t0) (1)

7min 4 . Amin (Iv T(t))
[0,L]x[0,t0] T(t)

63 = max (51 + 52) (max as) <
TE€Js [0,L]

> leellf e
ac{aaty1 2p,aaty1, 20}

X exp | —————=max{v1,72}(|ls — @ellLoo + lIpllL=) |,
mm[o’to]T(t)

then 0 < C3 < C3. Now, let B3 be a monotone increasing locally Lipschitz continuous
function such that 83(0) = 0 and

Bs(s) > max{s®es TV12min, s%s+713min},

D stro Mathematical m and for Lithium-ion batteries
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Proof of Theorem 2 VI
We construct the subsolution cs, for every tg < 400, as the solution of

ot r2 Or or

8"Ci+63a(cj) =0,
t) = mi
cs(z,y,t) o cs,0(0, )

o] D lo]
< s 9 (r Cs)*O (z,9,t) € (z,7r,t) € Ds x (0,t0),

r = Rs(x),
t=0,

so that, by the comparison principle, we have that 0 < ¢s < cs, (by applying Assumptions 9).

Finally, if we write

o Dg 0 (e —c
a(cs,max 3 Cs) T4 T;a (72%> =0 (xv yvt) € Ds % (01 tO)a
*(Cs,max — Cs) + C4(Cs,max - Cs)ﬁa-kY2 T = ].Ii,:l >0 r= Rs(x)y

or
t=0,

Cs,max — Cs = Cs,max — Cs,0
(63)

for Lithium-ion batteries

Mathematical m
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since 0 < C4 < C3, if we introduce

Amax N min Amax (x’ T(t)) b
[0, L] %[0, 0] T(t)

Amax =  max 7Amax(x, @)
[0,L] X [0,t0] T(t)

and define B4 as a monotone increasing locally Lispchitz continuous function such that
B4(0) =0 and
Ba(s) > max {sacs +722max | g%es T2 max }

then, by defining ¢s as the solution of

Ocs Ds 0 2865 3D
—— =0 sy, t D 0,%0),

ot r26r(r 87’) (@,3,8) € D5~ x (0,%0)

(o J— -

ECS + C3p4(c) =0 ly| = Rs(z)

Gs(z,y,t) = Gnéi};(cs,max —cs0(o,y) t=0,

Mathematical for Lithium-ion batteries
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we arrive to the definition of the searched function ¢s = ¢s,max — ¢s. We have that ¢s > 0
(due to Assumption 9) and ¢ is a subsolution of (63). Hence ¢s < ¢s,max — ¢s. Therefore we
have that cs < €5 < ¢s,max. Putting these two bounding solutions together we conclude

D<$§CSSE<Cs,max~

Hence (16) does not hold as t  tg. Applying Theorem 1 we obtain that tepq > to.
Therefore, either tong = tgnd or (17). O

Lithium-ion batt
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Proof of Theorem 3.

Assume that (19) does not hold as t — to with 0 < tg < t!__. We can substitute the

constants in the proof of Proposition 3

end”

Cq e (81 + 62) (fg%me) exp (A.HWTIIPHLm) ] (64)

TN, 0]

Cs max (61 + 02) (max as> max [lee||Foo
z€J 0,L] ac{aatyr 2p,@aty1 2B}

Y1+ 72
X ||H||poe exp | ———=|lpllree |, (65)
mingg ¢ T

5

and repeat the argument. We get good bounds for ce, ¢s B for t € [0, tg], which do not
depend on ||¢s — e, Li|| oo . Hence, applying Lemma 4.1 we can obtain some estimates of
¢s and g 1,1 in [0, to]. Therefore, by Theorem 2, we have that tenq > to. Hence, by
contraposition, if tenqg < ténd then (19) must hold. O

Mathematical modelling and for Lithium-ion batteries
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On the truncated temperature case. Proof of
Theorem 4

Proof of Theorem 4.
It is immediate to establish global sub and supersolutions for T', which
ensure (19) does not happen, and hence we get the global existence of

solutions.

O
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