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Aggregation and Diffusion



A model of diffusion, confinement and aggregation

The aim of this talk is to explain the modeling and theory behind
the following model for aggregation-diffusion phenomena:

∂ρ

∂t
= div

(
ρ∇( U ′(ρ)︸ ︷︷ ︸

Diffusion

+ V︸︷︷︸
Confinement

+ W ∗ ρ︸ ︷︷ ︸
Aggregation

)
)

(ADE)

We will discuss the range of power-type aggregation and diffusion

U ′(ρ) = m
m−1ρ

m−1, V (x) =
|x |α

α
, and W (x) =

|x |λ

λ
.

If V ,W are bounded below, we can always assume V ,W ≥ 0.
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Conservation equation. The heat equation

Conservation equation. Let ρ be a density and ω ⊂ Rd any
control volume, if j is the out-going flux

d

dt

∫
ω
ρdx = −

∫
∂ω

j · ndS = −
∫
ω
div jdx

Linear Darcy’s law: flux opposing the gradient j = −∇ρ yields

∂ρ

∂t
= ∆ρ (HE)

The confinement can be added as a drift j = −∇ρ− ρ∇V .

Non-linear Darcy’s law: j = −∇φ(ρ) for some non-decreasing
φ : R → R

∂ρ

∂t
= ∆φ(ρ). (DE)

When φ(ρ) = ρm for m > 0 this is called Porous Medium Equation
[Vázquez 2006].

Notice ∆φ(ρ) = div(φ′(ρ)∇ρ) so U ′′(ρ) = φ′(ρ)
ρ .
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Particle systems

Consider N with positions Xi of equal masses 1/N

and the
attracting/repulsive system1

dXi

dt
= −

N∑
j=1
j ̸=i

1

N
∇W (Xi − Xj)︸ ︷︷ ︸
Aggregation

− 1

N
∇V (Xi )︸ ︷︷ ︸

Confinement

, i = 1, · · · ,N

The empirical distribution is defined as µN
t =

N∑
j=1

1

N
δXj (t).

In the sense of distributions, µN solves the Aggregation Equation

∂tµ = div(µ∇(W ∗ µ+ V )) (AE)

Diffusion can added to the particle system by introducing noise
Details .

1Assume ∇W (0) = 0
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The Aggregation-Diffusion Equation

Joining the many particle approximation with the Porous Medium
diffusion:

∂ρ

∂t
= div

(
ρ∇(U ′(ρ) + V +W ∗ ρ)

)
(ADE)

Some famous examples

Model U V W

Heat Equation ρ log ρ 0 0

Porous Medium Equation 1
m−1

ρm 0 0

m ̸= 1

Fokker-Planck ρ log ρ 1
2
|x |2 0

Keller-Segel (d = 2) ρ log ρ 0 − 1
2π

log |x |

Swarming / Herding 0 0 1
a
|x |a − 1

b
|x |b
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Conservation?

In conservation laws, we expect

∫
Rd

ρ(t) =

∫
Rd

ρ0

(i.e. ρ0 ∈ P(Rd), we expect ρ(t) ∈ P(Rd))

A direct computation yields

d

dt

∫
Rd

ρdx =
d

dt
lim

R→∞

∫
BR

ρ dx = lim
R→∞

∫
∂BR

j
x

|x |
dS

?
= 0.

Sometimes mass is not conserved, and we will give an example
later.
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Diffusion phenomena: The heat equation ∂tρ = ∆ρ

It admits a solution

K (t, x) =
1

(4πt)
d
2

e−
|x|2
4t

▶ K (t, ·) → δ0 as t → 0+

▶ ∥K (t, ·)∥L1(Rd ) = 1.

▶ For any x , K (t, x) → 0 as t → ∞
▶ Any solution satisfies

∥ρ(t, ·)− K (t, ·)∥L1 → 0 as t → ∞.

This is known as asymptotic simplication.
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Diffusion phenomena: the Porous Medium Equation
∂tρ = ∆ρm

The range m ∈
(
(d−2

d )+, 1
)
∪ (1,+∞) :

Admits the Barenblatt solution (see [Vázquez 2006])

B(t, x) = t−α
(
C1 − C2|x |2t

2α
d

) 1
m−1

+
, α =

d

d(m − 1)− 2

That has the expect properties:

▶ B(0+, x) = δ0(x),

▶ B(t, x) → 0 as t → ∞,

▶ ∥B(t, ·)∥L1(Rd ) = 1, and

▶ Asymptotic simplication

∥ρ(t, ·)− B(t, ·)∥L1(Rd ) → 0 as t → ∞.
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Diffusion phenomena: the Porous Medium Equation:
∂tρ = ∆ρm

For 0 < m < d−2
d there are two surprising facts:

▶ There is finite-time extinction

If ρ0 ∈ Lq(Rd) with q = (1−m)d
2

∥ρ(t)∥Lq ↘ 0, as t ↗ T ∗ < ∞.

▶ There is always infinite-time total mass loss

∥ρ(t)∥L1 → 0

.

▶ [Brezis and Friedman 1983] proved that δ0 does not diffuse:
if we take a sequence ρj(0

+, ·) → δ0, the associated solution
ρj(t) → δ0.
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Asymptotic profiles

Notice that the heat kernel is self-similar

K (t, x) = (2t)−
d
2G (− x√

2t
), G (y) =

1

(2π)
d
2

exp(− |y |2
2 )

So send K to G : τ = log
√
2t + 1, y = x√

2t+1
and

u(τ, y) = edτρ (t, x)

Applying the change of variable to the heat equation we recover the
Fokker-Planck equation

∂τu

= ∆yu + div(yu)

= div(u∇y (log u + |y |2
2 )).

Clearly, G is a stationary solution.
Furthermore, G is an asymptotic profile for the equation:

∥u(t, ·)− G∥L1 → 0, as t → ∞.

A similar approach works for the Porous Medium Equation, where
the profile is B.
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Finite time blow-up
The Keller-Segel model

The Keller-Segel proposed a model of cell migration by chemotaxis
given by {

∂tρ = ∆ρ+ div(ρ∇v),

−∆v = u.
M =

∫
Rd

ρ0(x) dx

For d ≥ 2 we can write v = W ∗ u for W the Newtonian potential.

There exists M∗ > 0 such that

▶ If M < M∗ solutions are global-in-time.

▶ If M > M∗ there is finite-time blow-up. And ρ(T ∗) = Mδ0.
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Finite time blow-up

The Keller-Segel proposed a model of cell migration by chemotaxis given by{
∂tρ = ∆ρ+ div(ρ∇v),

−∆v = u.
M =

∫
Rd

ρ0(x) dx

Case d = 2

▶ [Jäger and Luckhaus 1992] There exists M∗ s.t. M > M∗, then ρ(T ∗)
contains a Dirac delta.
They work in Ω bounded (+no-flux condition).

▶ [Herrero and Velázquez 1996]: For Rd we have M∗ = 8π. Explicit
constructions.

▶ [Dolbeault and Perthame 2004]: d
dt

∫
Rd |x |2ρ(t, x)dx = 4M

(
1− M

8π

)
If M > M∗, then ρ(T ∗) = Mδ0

▶ [Blanchet, Dolbeault, and Perthame 2006]: For M < M∗ global existence.

Case d ≥ 3

▶ [Blanchet, Carrillo, and Laurençot 2009]:

There is a functional F decaying along trajectories and

d

dt

∫
Rd

|x |2ρ(t, x)dx = 2(d − 2)F [ρ(t, ·)] ≤ 2(d − 2)F [ρ0].

When M > M∗ there exist ∥ρ0∥L1 = M such that F [ρ0] < 0.
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▶ [Jäger and Luckhaus 1992] There exists M∗ s.t. M > M∗, then ρ(T ∗)
contains a Dirac delta.
They work in Ω bounded (+no-flux condition).

▶ [Herrero and Velázquez 1996]: For Rd we have M∗ = 8π. Explicit
constructions.

▶ [Dolbeault and Perthame 2004]: d
dt

∫
Rd |x |2ρ(t, x) dx = 4M

(
1− M

8π

)
If M > M∗, then ρ(T ∗) = Mδ0

▶ [Blanchet, Dolbeault, and Perthame 2006]: For M < M∗ global existence.

Case d ≥ 3

▶ [Blanchet, Carrillo, and Laurençot 2009]:
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▶ [Jäger and Luckhaus 1992] There exists M∗ s.t. M > M∗, then ρ(T ∗)
contains a Dirac delta.
They work in Ω bounded (+no-flux condition).

▶ [Herrero and Velázquez 1996]: For Rd we have M∗ = 8π. Explicit
constructions.

▶ [Dolbeault and Perthame 2004]: d
dt

∫
Rd |x |2ρ(t, x) dx = 4M

(
1− M

8π

)
If M > M∗, then ρ(T ∗) = Mδ0

▶ [Blanchet, Dolbeault, and Perthame 2006]: For M < M∗ global existence.

Case d ≥ 3

▶ [Blanchet, Carrillo, and Laurençot 2009]:

There is a functional F decaying along trajectories and

d

dt

∫
Rd

|x |2ρ(t, x)dx = 2(d − 2)F [ρ(t, ·)] ≤ 2(d − 2)F [ρ0].

When M > M∗ there exist ∥ρ0∥L1 = M such that F [ρ0] < 0.



Finite time blow-up

The Keller-Segel proposed a model of cell migration by chemotaxis given by{
∂tρ = ∆ρ+ div(ρ∇v),

−∆v = u.
M =

∫
Rd

ρ0(x) dx

Case d = 2
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Main question

For
∂ρ

∂t
= div

(
ρ∇(U ′(ρ) + V +W ∗ ρ)

)
(ADE)

can we classify characterise ρ∞ such that

ρ(t) → ρ∞

in terms of general U ,V ,W ?
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Gradient flow in Rd

Let F : Rd → R. Imagine we look for argminF .

We call gradient flow of F the flow of the ODE
dX

dt
= −∇F (X (t))

If F is strictly convex, for any X (0) we have
X (t) → X∞ = argminF .

If D2F ≥ λI then |X (t)− X∞| ≤ e−λt |X0 − X∞|.
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The Heat Equation as a gradient flow in L2

Let F : H1(Rd) → R be defined as F [ρ] = 1
2

∫
Rd |∇ρ|2

Formally

∇L2F [ρ0] =
δF
δρ

[ρ0] = −∆ρ0

Remark

We can rewrite the Heat Equation

∂ρ

∂t
= −∇L2F [ρ(t)], where F [ρ] = 1

2

∫
Rd

|∇ρ|2 (HE)

F is strictly convex in L2(Rd). Naturally, ρ(t) → 0 which is the
“minimiser” of F .

In general, the ∇L2F is given by the Euler-Lagrange equations
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Gradient flows in Wasserstein space
Our equations are “nice” in 2-Wasserstein space (P2).
For F : L1 ∩ P2(Rd) → R formally speaking

∇d2F [ρ] = − div

(
ρ∇δF

δρ

)

Remark

If W (x) = W (−x), we can formally rewrite the Aggregation-Diffusion
problem asDue to the convolution, F is non-local and
F [ρ] ̸=

∫
Rd F (x , ρ(x))dx .

δF
δρ can be computed directly

∂ρ

∂t
= −∇d2F [ρ(t)], where F [ρ] =

∫
Rd

(
U(ρ) + V ρ+ 1

2ρ(W ∗ ρ)
)
.

(ADE)

Formally, d
dtF [ρ(t)] = −

∫
Rd

ρ

∣∣∣∣∇δF
δρ

[ρ]

∣∣∣∣2 .
This is called energy dissipation estimate.
The precise definition of solution is the notion of curves of maximal slope.
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Gradient-flow structure and minimisation
The extension of convexity in Rd for P2 is displacement convexity
(see [McCann 1997])

There is a suitable theory for gradient flow of F in d2
(see [Ambrosio, Gigli, and Savare 2005])

In fact, as t → ∞ we have

F [ρ(t)] ↘ inf
ρ∈P2∩L1

F .

Under stronger hypothesis, if ρ∞ = argminF then

dp(ρ(t), ρ∞) → 0.

Due to the energy dissipation a minimiser ρ∞ should satisfy

ρ∞∇δF
δρ

[ρ∞] = 0.

Either ρ∞ = 0 (as in PME), or δF
δρ

[ρ∞] = C (over open sets).
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Minimisation and (ADE)

The free energy for (ADE)

F [ρ] =

∫
Rd

(
U(ρ) + V ρ+ 1

2
ρ(W ∗ ρ)

)
.

In some cases it is displacement convex (see [Carrillo and Slepčev 2009]):
m ≥ d−1

d
and V ,W convex.

Recall for ∂tρ = ∆ρm with m < d−2
d

we can leave P2.

When inf F = −∞, then we do not expect an asymptotic equilibrium.
(maybe intermediate asymptotics)

Actually, we need to consider the extension of F to M(Rd), which we denote F̃
(see [Demengel and Temam 1986])

If µ∞ ∈ argmin∥µ∥=M F̃ [µ], we expect it to be a local attractor (no guarantee).

The first variation is:
δF
δρ

= U ′(ρ) + V +W ∗ ρ.
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Keller-Segel in dimension d = 2
Analysis of the free energy

The free energy for Keller-Segel is

F [ρ] =

∫
R2

ρ log ρ︸ ︷︷ ︸
S[ρ]

+
−1

4π

∫
R2

∫
R2

ρ(x)ρ(y) log |x − y | dx dy︸ ︷︷ ︸
I[ρ]

.

To see whether diffused or concentrated is energy beneficial:
ρλ(x) = λ2ρ1(λx).

Then, letting M =
∫
R2 ρ1 we have

S[ρλ] = S[ρ1] + 2M log λ

I[ρλ] = I[ρ1]−
M2

2π
log λ

Eventually

F [ρλ] = F [ρ1] + 2M log λ
(
1− M

8π

)
This gives the intuition that for M > 8π then δ0 (i.e. λ → ∞) is
energy beneficial.
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Asymptotic concentration for ADE for m ∈ (0, 1)
We go back to

δF
δρ

= U ′(ρ) + V +W ∗ ρ.

In some cases, this class of solutions have a bounded range of
mass.

For example when U is FDE and W = 0 we get for some h ≥ 0

ρ(h) =
(
1−m
m (V + h)

) −1
1−m

Observe
∫
ρ(h) ≤

∫ (
1−m
m V

) −1
1−m sometimes < ∞.

In those settings minimisers have a Dirac delta (for certain mass).

We are able to prove, in some cases, that they are global attractors
of (ADE): talk of A. Fernández-Jiménez.
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Asymptotic simplication for linear diffusion

We start by a classical observation.

Remark

If W ∈ L∞(Rd), then there are no finite-mass steady states.

If W ∈ L∞(Rd) and ρ ∈ L1(Rd), then W ∗ ρ ∈ L∞(Rd).
The Euler-Lagrange equation is log ρ+W ∗ ρ = h, so

ρ = eceW ∗ρ ≥ ehe−∥W ∗ρ∥L∞ > 0.

Therefore, in this range we always expect diffusion.
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Asymptotic simplication for linear diffusion
In the case of linear diffusion

∂tρ = ∆ρ+ div(ρ∇W ∗ ρ).

[Cañizo, Carrillo, and Schonbek 2012]: for small W

∥ρ(t, ·)− K (t, ·)∥L1 → 0 as t → ∞. (⋆)

where K is the heat kernel.

Theorem [Carrillo, G-C, Yao, and Zeng 2023]

Let n ≥ 2, and assume W (x) = W (−x)

▶ W ∈ W1,∞(Rd)

▶ ∇W ∈ Ln−ε(Rd)

▶ ∆W ∈ L
n
2 (Rd) (and also ∆W ∈ L

n
2
−ε(Rd) if n ≥ 3)

Then (⋆).

Notice that this hypothesis work for W (x) ∼ |x |−ε for any ε > 0,
but not for the critical case W (x) ∼ log |x |.



Asymptotic simplication for linear diffusion
In the case of linear diffusion

∂tρ = ∆ρ+ div(ρ∇W ∗ ρ).
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Sketch of proof of [Carrillo, G-C, Yao, and Zeng 2023]
▶ Well-posedness: fixed-point argument in Duhamel’s formula.

▶ Re-scaled of variable

ρ̃(τ, y) = enτρ
(
1
2(e

2τ − 1), eτy
)
.

we can write

∂ρ̃

∂τ
= ∆y ρ̃+∇y · (y ρ̃) +∇y · (ρ̃∇y (W̃ ∗ ρ̃))

where W̃ (τ, y) := W (eτy).

▶ Using a smart change in variable

F [ρ(t)] ≤ −n

2
ln t + C (n, ∥W ∥L∞).

▶ Thus, using the control of
∫
ρ log ρ we prove that∫

Rd

ρ̃(τ, y)| log ρ̃(τ, y)|dy ≤ C .



Sketch of proof of [Carrillo, G-C, Yao, and Zeng 2023]
▶ Well-posedness: fixed-point argument in Duhamel’s formula.

▶ Re-scaled of variable

ρ̃(τ, y) = enτρ
(
1
2(e

2τ − 1), eτy
)
.

we can write

∂ρ̃

∂τ
= ∆y ρ̃+∇y · (y ρ̃) +∇y · (ρ̃∇y (W̃ ∗ ρ̃))

where W̃ (τ, y) := W (eτy).

▶ Using a smart change in variable

F [ρ(t)] ≤ −n

2
ln t + C (n, ∥W ∥L∞).

▶ Thus, using the control of
∫
ρ log ρ we prove that∫

Rd

ρ̃(τ, y)| log ρ̃(τ, y)|dy ≤ C .



Sketch of proof of [Carrillo, G-C, Yao, and Zeng 2023]
▶ Well-posedness: fixed-point argument in Duhamel’s formula.

▶ Re-scaled of variable

ρ̃(τ, y) = enτρ
(
1
2(e

2τ − 1), eτy
)
.

we can write

∂ρ̃

∂τ
= ∆y ρ̃+∇y · (y ρ̃) +∇y · (ρ̃∇y (W̃ ∗ ρ̃))

where W̃ (τ, y) := W (eτy).

▶ Using a smart change in variable

F [ρ(t)] ≤ −n

2
ln t + C (n, ∥W ∥L∞).

▶ Thus, using the control of
∫
ρ log ρ we prove that∫

Rd

ρ̃(τ, y)| log ρ̃(τ, y)|dy ≤ C .



Sketch of proof of [Carrillo, G-C, Yao, and Zeng 2023]
▶ Well-posedness: fixed-point argument in Duhamel’s formula.

▶ Re-scaled of variable

ρ̃(τ, y) = enτρ
(
1
2(e

2τ − 1), eτy
)
.

we can write

∂ρ̃

∂τ
= ∆y ρ̃+∇y · (y ρ̃) +∇y · (ρ̃∇y (W̃ ∗ ρ̃))

where W̃ (τ, y) := W (eτy).

▶ Using a smart change in variable

F [ρ(t)] ≤ −n

2
ln t + C (n, ∥W ∥L∞).

▶ Thus, using the control of
∫
ρ log ρ we prove that∫

Rd

ρ̃(τ, y)| log ρ̃(τ, y)|dy ≤ C .



Sketch of proof of [Carrillo, G-C, Yao, and Zeng 2023]
▶ Well-posedness: fixed-point argument in Duhamel’s formula.

▶ Re-scaled of variable

ρ̃(τ, y) = enτρ
(
1
2(e

2τ − 1), eτy
)
.

we can write

∂ρ̃

∂τ
= ∆y ρ̃+∇y · (y ρ̃) +∇y · (ρ̃∇y (W̃ ∗ ρ̃))

where W̃ (τ, y) := W (eτy).

▶ Using a smart change in variable

F [ρ(t)] ≤ −n

2
ln t + C (n, ∥W ∥L∞).

▶ Thus, using the control of
∫
ρ log ρ we prove that∫

Rd

ρ̃(τ, y)| log ρ̃(τ, y)|dy ≤ C .



Sketch of proof of [Carrillo, G-C, Yao, and Zeng 2023]
▶ Well-posedness: fixed-point argument in Duhamel’s formula.

▶ Re-scaled of variable

ρ̃(τ, y) = enτρ
(
1
2(e

2τ − 1), eτy
)
.

we can write

∂ρ̃

∂τ
= ∆y ρ̃+∇y · (y ρ̃) +∇y · (ρ̃∇y (W̃ ∗ ρ̃))

where W̃ (τ, y) := W (eτy).

▶ Using a smart change in variable

F [ρ(t)] ≤ −n

2
ln t + C (n, ∥W ∥L∞).

▶ Thus, using the control of
∫
ρ log ρ we prove that∫

Rd

ρ̃(τ, y)| log ρ̃(τ, y)|dy ≤ C .



Sketch of proof of [Carrillo, G-C, Yao, and Zeng 2023]
▶ Well-posedness: fixed-point argument in Duhamel’s formula.

▶ Re-scaled of variable

ρ̃(τ, y) = enτρ
(
1
2(e

2τ − 1), eτy
)
.

we can write

∂ρ̃

∂τ
= ∆y ρ̃+∇y · (y ρ̃) +∇y · (ρ̃∇y (W̃ ∗ ρ̃))

where W̃ (τ, y) := W (eτy).

▶ Using a smart change in variable

F [ρ(t)] ≤ −n

2
ln t + C (n, ∥W ∥L∞).

▶ Thus, using the control of
∫
ρ log ρ we prove that∫

Rd

ρ̃(τ, y)| log ρ̃(τ, y)| dy ≤ C .



Sketch of proof of [Carrillo, G-C, Yao, and Zeng 2023]
▶ Uniform-in-time regularity:

• If ∇W ∈ Ln(Rd) then

sup
τ≥1

∥ρ̃(τ, ·)∥H1 < ∞.

• If n ≥ 2, ∇W ∈ Ln(Rd) and ∆W ∈ L
n
2 (Rd) then

sup
τ≥1

∥ρ̃(τ, ·)∥Cα < ∞

modulus of continuity arguments like
[Kiselev, Nazarov, and Volberg 2007]

▶ We study the L1 relative entropy E1(ρ̃∥G ) =
∫
Rd ρ̃ log

ρ̃
G dy .

logarithmic Sobolev inequality leads to ODI y for E1

(where the terms from W are a controlled errors)
▶ Lastly, we apply the Csiszar-Kullback inequality

∥ρ(t, ·)− K (t, ·)∥L1 = ∥ρ̃(t, ·)− G (·)∥L1 ≤ 2
√
E1(ρ̃∥G ) → 0

as t → ∞.
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Patlak–Keller–Segel model with degenerate diffusion in higher
dimensions”. Calculus of Variations and Partial Differential Equations
35.2 (Aug. 2009), pp. 133–168.

A. Blanchet, J. Dolbeault, and B. Perthame. “Two-dimensional
Keller-Segel model: Optimal critical mass and qualitative properties of
the solutions.”. Electronic Journal of Differential Equations
(EJDE)[electronic only] (2006).

H. Brezis and A. Friedman. “Nonlinear parabolic equations involving
measures as initial data”. J. Math. Pures Appl. 62 (1983), pp. 73–97.

J. A. Carrillo, D. G-C, Y. Yao, and C. Zeng. “Asymptotic simplification
of Aggregation-Diffusion equations towards the heat kernel”. Archive for
Rational Mechanics and Applied Analysis (2023). arXiv: 2105.13323.

https://arxiv.org/abs/2105.13323


Bibliography II
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